Automate your cycle of intelligence

Operationalize Al at Scale

Katonic MLOps platform is a Collaborative platform with a unified Ul to manage all data
science in one place. The Platform combines the creative scientific process of data
scientists with the professional software engineering process to build and deploy
Machine Learning Models into production safely, quickly, and in a sustainable way.

< Katonic”
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Leadership Team of Al and Business Experts

with a good mix of enterprise and start-up experience

Gireesh Ramji Nitin Deshpande

Chief Strategy Officer Country Head: Sales and Operations, India
36 Years Experience

DXC, HPE, EDS, Genpact, L&T

Subhrajit Mohanty
Director, Al
10vyears' experience,GE ,
Infosys , Grand Thornton

Prem Naraindas

Founder and CEO !

20 Years Experience 20 Years Experience
TCS, HPE ,DXC Merrill Lynch, Barclays,
Morgan Stanley, Eyeota

Ajit Patwardhan
Sales Director - India
30 Years Experience
IBM, Mphasis , DXC

Advisors
Dhananjaya Tambe _ Dr Sunil Rai Avinash Velhal Sriram Naganathan
EX DMD, CIO State Bank of India Vice-Chancellor of the University of CIO, ATOS Global Ex CIO Liberty General
Petroleum and Energy Studies Insurance
katonic.ai



Todays State of Al

“Al is moved from the innovation lab
to strategic imperative and Al-enabled
innovation is now mission critical for
organizations”

katonic.ai



Winning with Al Now

Financial services Government Energy Retail
Fraud detection, ID verification Cyber-security, smart cities and utilities Seismic and reservoir modeling Video surveillance, shopping patterns

Health Consumer tech Service providers Manufacturing
PerspralEesnedigne, image analytics Chatbots Media delivery Predictive and prescriptive maintenance ¢



: : s
Enterprises are Accelerating Al Investments

I "
NEWS - 30 NOVEMBER 2020

Covid-19 Devastated Some Industries But Accelerated Al Use dewilichange everything:

R DeepMind’s Al makes gigantic
Okay, the GPT-3 hype seems By Companies Across The Country leapinsolving protein
pretty reasonable structures
Google’s «lee‘p-learning program for determining the
el Qe PR e TR Reporting by Helen Popkin, Aayushi Pratap and Nina Wolpow b

(Forbes, 4/26/2021)

Ewen Callaway

86% ALl Here, There, Everywhere 76%

Many of us already live with artificial intelligence now, but
researchers say interactions with the technology will become

Of Organisations increasingly personalized. (NYT,2/23/2021) YoY increase in the
have increased

_ average number of

their ML Budgets IBM CEO: 'Every company will become an Al [CEIERIER RS

for 2021 company' employed by

(Techradar, Mid 2020) 9 .
organisations.

By Joel Khalili about 1 year ago

Organisations will spend S105B on Al/ML this year,

excluding the Wages

katonic.ai 6




And yet... Organisations Struggle To Operationalize Al

98% of IT
EELES

believe that
Operationalizing

Al will give
their company a
competitive
edge!

katonic.ai

31 and 90 days?

The average time it takes an organization to get a
single Al model into production

Only 15% of

Models make it to

Only 6% feel that they have
the right capability!

production
1.” Operationalize Machine Learning” report, 2.”2020 State of Enterprise Machine Learning” report,
Forrester, June 2020” Algorithmia, Dec 2019”



Chief Data and Analytics Officers are suffering

| want my Data Science team to deliver value : _ :
| need to tie my innovation

budget to production

Data Scientist struggle to go from small sample solutions
data to full size data

Maintaining data science in production is a
nightmare.

Our Engineers and Data
Scientists don’t speak the
same language

Our data scientists only use notebooks. Can we
deploy them in productions.

We have an extensive existing infrastructure and
none of the solutions on the market work on it

katonic.ai




Perception: Al Application is mostly about ML Model

| |
Data o
Verification Machine
Resource
Management
Data Collection
Serving
Infrastructure
ML Code
Configuration
Monitoring
Feature
Extraction
Process Analysis Tools
Management Tools
Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.
katonic.ai 9



Building the first
proof-of-concept version of
a machine learning system
can be pretty easy...

katonic.ai 10



But when you try to productionise...

Problems show up when you try to scale
out, and keep a system in long-term
continuous operation

Notebooks (by themselves) don’t scale!

IPIyl: Notebook  Modulation Lui crackpeit: am o5 11t imecomest

- - -
Untitled.ipynb
katonic.ai Untitled_2.ipynb
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In reality...ML Code is tiny part in this overall process

Data Machine
Verification Resource Monitoring

_ Management
: : Data Collection
Configuration

Serving

Infrastructure
Analysis Tools

Feature Extraction Process Management
Tools

Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.
katonic.ai 12



In reality...ML Code is tiny part in this overall process

. Model Training is not "

the end Goal

Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.
katonic.ai 13



The ML Development and Deployment Cycle

OPERATIONS

A DATA SCIENCE

A\ SANDBOX

%
Jq

Bulk of effort today is in the left side of this process (development)

14

katonic.ai
EEEEEE



The ML Development and Deployment Cycle

el

No Proper Hand off from

Data Science team to
Operations

Bulk of effort today is in the left side of this process (development)

katonic.ai 15



Code is deterministic and always runs as written

Time deployed

Negative Business Value Positive

katonic.ai (J =deterministic code
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ML model performance can decay over time

Maximum

Model Business Value

Ce—

Time deployed

Negative Business Value Positive

katonic.ai __ =probabilistic model

Negative
Business Value

17



ML models must be monitored, retrained, and remodeled. =T

Maximum

Model Business Value

T —

L ———

Remodel ?

Time deployed

T

Negative
Business Value

Negative Business Value Positive

Retrain ?

katonic.ai __ =probabilistic model 18



ML models must be monitored, retrained, and remodeled. =T

)
=
=

Maximum

Al depends on Code and
Data

Q ) Time deployed
n
S Remodel ?
a8 S
© Negative
@ Business Value
(]
< Retrain ?
katonic.ai __ =probabilistic model 19



ML models must be monitored, retrained, and remodeled. =T

Sitive

Maximum

Devops alone is not enough

Continuous Monitoring and
Continuous Training is also needed

Business Value

=
©
(@)
)
Z

Retrain ?

katonic.ai __ =probabilistic model 20



The ML lifecycle needs to jump across many walls

Data
Engineering

Data
Science

Sw / ML
Engineering

DevOps

katonic.ai



The ML lifecycle needs to jump across many walls

Al Ii;quires many different

DevOops

roles to get involved

katonic.ai 22
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Solution : MLOps will enable continuous Al innovation

=

Collaborative solution unifying Machine Learning System development and Operations supporting
end to end Machine Learning Lifecycle with ability to access data at scale from any source

Continuous Innovation MLOps
/\ /\
- Y4 N
Ideate Prioritize & Refine Experiment/Train/Build/Test/Deploy Maintenance
QA
.O
58 Integrated
Stakeholder needs i.i ML team D\/
' Validation
Governance Forum
Business case Deployment
Assessment
ﬁ Dedicated
Use case generation ‘.,
Portfolio Capacity guh’j Vs ~ SLthport
Mgmt. Planning uild vs cam
partner Release
@ @ Management 'a
Architecture Methodology ’:I
-4 Advisory & Standards
Strategic
objectives and
goals Other
. . groups
katonic.ai (eg. RPA) 27



Introducing Katonic MLOPs Platform

Platform Ul
Data Engineers Data Scientists ML Engineers Data Analysts

T creative scientific process

Experimentation Model Model ML Model of data scientists

Training Evaluation Pipelines Registry

Dataset , Source and Feature Repository +

Data Sources ) = i Professional software
% crowflake ORACLE '/-‘\ . o e - °
TR T 7Y studio julia R @ python g Martas QPfO“jt“;uSr engineering process
,,,,,, azon 9 Grafana
Spoiz ! e Libraries and Algorithms o SELDOVN
_ e (& avter p—
75+ Sources Mgmﬂ Q@leain O PyTorch XGBoost ¥ Tensor |::I pandas miflow
Releasing Models into
) Infrastructure and Orchestrators prOdUCtlon Safely' qwckly,
Q) Amazonis O 8% and in a sustainable way.
Cloud —_— On Prem
aws AArzure D Google Cloud ot <A NVIDIA.
katonic.ai
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Katonic recognised as a major Contender by Everest

Market impact
(Measures impact created in the market)

High

Low

A

Amazon Web Services @ ® Microsoft Azure

Major Contenders : Go.ogle Cloud Platfo

eDatiku T g a\ \&

®H20.ai
® Databricks

®Cloudera

Aspirants

Low High

Vision & capability
(Measures ability to deliver products successfully)

® Leaders
@® Major Contenders
O Aspirants



Our Unified Platform for Operationalizing Al

Accelerate Experimentation

Data Scientists can build
experiments and develop high-
quality models with self-serve
access to the latest tools and
scalable compute.

Security and Control
Secure multi-tenancy with

integration to enterprise
authentication mechanisms

Connectors

Connect data from any cloud, on-
premises, or proprietary system

katonic.ai

Deliver Models to Production

Machine Learning Engineers Deploy models in
one-click on industrial-grade, auto-scaling,
Kubernetes-based infrastructure.

~ Kattonic

¢ & customer-chum-model-h8pBb_run-émegi

Katonic MLOps Platform

Monitor and Govern

Complete visibility with Real-time
insights and alerts on model
performance with enterprise grade
security and Governance.

Flexible

Open and flexible solution that
integrates with any existing data
infrastructure and systems.

Scalable

Cloud native with Kubernetes
Foundation to support modern
elastic and scalable infrastructure
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50
Addressing two different audiences h

A Low Code / No Code Ul for

Multi-language Notebooks
analysts & engineers

approach for Data scientist

—
—
I Katonic

0|

katonic.ai
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Operationalizing Al has Big Business Impact

FASTER (o) REDUCTION IN 7 MORE COST-EFFECTIVE
X DEPLOYMENTS (0] MANUAL LABOUR X INFRASTRUCTURE
Faster and more reliable way to Reduction in manual labour costs Reduction in computing costs
deploy and improve models in through higher productivity of through efficient management of
production. the data science team. data science work loads.
katonic.ai 3
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DataBank

katonic.ai

A

DataBank

TRUST & SECURE
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Head of Analytics at DataBank

katonic.ai
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Customers are Leaving dataBank

katonic.ai



Use Machine Learning to Reduce Churn

katonic.ai
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What is Feature Engineering

Raw data

Demographic data
Name, age, gender,
address etc.

Account Information
Bank account name,
Location etc.

Property Details

property ID, property
type, site location,
Quantity, Price

katonic.ai
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What is Feature Engineering

Raw data Outcome
Demographic data Customer  Probability of Churn

Name, age, gender,

address etc. (Q 58 % MEDIUM
Account Information @ 0

83 % HIGH
Bank account name, & G
Location etc. g

12 % LOW
Property Details ) .
property ID, property a 39 % Low
type, site location,
Quantity, Price
katonic.ai 39



What is Feature Engineering

|
Raw data ML Model Outcome
Demographic data Customer  Probability of Churn
Name, age, gender,
o o
address etc. A 58 % MEDIUM
. 0, °
Account Information o ) 83 % HIGH
Bank account name, Features = E@ Prediction
. M
Location etc. b= g 12 % Low
Property Details o) ,
property ID, property a 39 % LOW
type, site location,
Quantity, Price
katonic.ai 40



What is Feature Engineering

|
Raw data Types of Features ML Model Outcome

Demographic data Transformations Customer Probability of Churn

Name, age, gender,

address etc. e.g. Category Encoding f% 58 % MEDIUM
. ) °

Account Information o ) 83 % HIGH

Bank account name, = E% Prediction

. P

Location etc. b= g 12 % Low

Property Details o) ,

property ID, property a 39 % LOW

type, site location,

Quantity, Price
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What is Feature Engineering

|
Raw data Types of Features ML Model Outcome
Demographic data Transformations Customer Probability of Churn
Name, age, gender,
address etc. e.g. Category Encoding f% 58 % MEDIUM
Account Information Context Features 8 83 %
- a ° HIGH
Bank account name, ﬁ@% Prediction
i ) e.g. Weekda o
Location etc g y b= g 12 % Low
Property Details o) ,
property ID, property a 39 % LOW
type, site location,
Quantity, Price
katonic.ai 4



What is Feature Engineering

Raw data

Types of Features

ML Model

Outcome

Demographic data
Name, age, gender,
address etc.

Account Information
Bank account name,
Location etc.

Property Details

property ID, property
type, site location,
Quantity, Price

katonic.ai

Transformations

e.g. Category Encoding

Context Features

e.g. Weekday

Feature Augmentation

e.g. Weather

—% [y Prediction
B

Customer  Probability of Churn

9

2
O

=
9

2

58 %

83 %

12 %

39 %

MEDIUM

HIGH

LOW

LOW
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What is Feature Engineering

Raw data

Types of Features

ML Model

Outcome

Demographic data
Name, age, gender,
address etc.

Account Information
Bank account name,
Location etc.

Property Details

property ID, property
type, site location,
Quantity, Price

katonic.ai

Transformations

e.g. Category Encoding

Context Features

e.g. Weekday

Feature Augmentation

e.g. Weather
Pre-computed Features

e.g. Purchases last 7, 14, 21days

=

[ Prediction
R

Customer  Probability of Churn

9

2
O
=
9
2

58 %

83 %

12 %

39 %

MEDIUM

HIGH

LOW

LOW
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The Al Model Life Cycle
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The Al Model Life Cycle
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The Al Model Life Cycle
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The Al Model Life Cycle
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Key Features



Cloud Hosted Workspaces

New containerized environments are = tawne
provisioned on-demand with just a few
mouse clicks—whether they’re transient
for development and testing, or
long-running for a production workload.
* Create New Tasks in any language

* Collaborate with code across teams

e Use any frameworks

katonic.ai

Get Started with Workspaces
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Operationalize Al at Scale — Data Ingestion at ease

k|
A @ :
65 & °.
o A ¥
Your data, whenever and wherever you need it .. @
In a few clicks, send your data to any reporting tool or data @

warehouse or bring all your data into MLOps Platform.

katonic.ai

AN

MysoL

MySQL

CSV File (destination)
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Feature Store to serve, share and re-use ML features.

* Share and reuse ML features
across use cases

* Serve ML Features at scale
with low latency

* Alleviate training serving skew

katonic.ai
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Operationalize Al at Scale - Data Preparation and Transformation.

Make your Data
Business Ready

Transform and enrich
data for analytics and
machine learning — at
scale, and across
multiple sources with a
few clicks or with
SQL/Python.

katonic.ai
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Power of data science to business intelligence.

Self Service
Data Science

Machine learning in the
hands of analysts and
citizen data scientists
with visual and
explainable automated
ML modelling.

katonic.ai
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Continuous Model monitoring

Monitor the effectiveness and efficiency
of a deployed model with a simple
dashboard integrated with Model
Registry and Feature Store.

* Get real-time insights and alerts on
model performance and data
characteristics.

* debug anomalies and initiate trigger
to execute ML production pipelines
to retrain the models with new data,

depending on your use case 0.036 0.075

e Trigger model re-training pipeline
or collect relevant training data to
address performance
degradation.

katonic.ai

66.3x  65.9%

92.9%

77.4

93 55

o0
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Rich visualizations and dashboards

Explore
Explore your data using the array of data visualizations.

View
View your data through interactive dashboards.

katonic.ai 79



A0

Operationalize Al at Scale - Empower Your Organization to Use Al

Prod uction-grade Dash Autonomous Driving Demo
apps for your
business

Converts Python scripts
to production-grade apps
for your business to put
complex Python analytics
in the hands of business
decision makers and
operators.

katonic.ai



Accelerate your Al Journey

Rapidly build solutions
for your Business Goals

~TKatonic

&4 App Store

Marketplace of Solution Accelerators including Pre Built

Marketplace pf SO|l.JtI0n =R T $
ACCG I e ratO rS I n CI U d | ng Fe Tonl‘\c Solutions for Chief 1 Soluliu!-us for Chief Solutions for Chief
. ) What's New Financial Officer / Marketing Officer Technology Officer
Pre Built Code, ‘__W g
=
Notebooks, and step by
step instructions to get

started. |

katonic.ai 81



Get started with Al today with Al

Begin Your Proof of Concept

Contact Katonic i
for a Trial Engage Katonic to explore the

benefits of Al and Automation
into your Data Science process

Pilot and X
Validate ’%

* Tryit with yourown data
e Guided evaluation for
maximum success

Prioritize use cases @ EI * Picktheright use case

Deploy, Train, ﬂ” Contact: sales@katonic.com
0

and Enjoy

katonic.ai



Automate your cycle of intelligence

Thank You

L Katonic
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