
Zivver’s security and
privacy by design
approach explained

http://www.zivver.com

zivver • security and privacy by design P. 2zivver • security and privacy by design P. 2

01. Transport Layer Security 06

02. User authentication and log in 07
	 2.1		 Credential	verification	 	07
 2.2 Second factor authentication 07
 2.3 User login and future authentication with access and refresh tokens 08

03. Public/private key creation and
 management for new users 09
 3.1 A new user account is created by providing username and password 09
 3.2 Create new public/ private key pair 09
 3.3 Store public key of user 09
 3.4 Generate derived key based on user password 09
 3.5 Encrypt user’s private key 10
 3.6 Store encrypted private key 10
 3.7 Clean up unnecessary data 10

04. Information sharing with other users 11
 4.1 Cipher key generation 11
	 4.2		 Symmetric	encryption	of	file	and	message		 11	
 4.3 Asymmetric encryption of cipher key 11

05. Information retrieval by users 12
 Login and derived key retrieval 12
 Information retrieval 12

Introduction

zivver • security and privacy by design P. 3zivver • security and privacy by design P. 3

06. Information sharing with guests 13
 6.1 Provide guest information and access right 13
 6.2 Create new public/private key pair per guest/ conversation 14
	 6.3	 Store	public	key	for	message	and	file	encryption		 14
 6.4 Generate symmetric key and encrypt and store guest-conversation
	 	 specific	private	key	 14
	 6.5	 Send	out	notification	email	with	symmetric	key	and	username	 15
 6.6 Wrap private key with public keys Zivver users for replies 15

07. Information retrieval by guests 16
	 7.1		 Guest	clicks	on	notification	email		 16	
 7.2 Guest is logged into Zivver 16
 7.3 Guest can access information 16

08. Master key options for organizations 17
 8.1 Creating a new organization with an admin 17
 8.2 Create new public/private key pair 17
 8.3 Wrapping the private master key with the admin key 17
 8.4 Store public key of organization 17
 8.5 Add users to organization and wrap private key 17
 8.6 Assign admin rights to other colleagues 17
 8.7 Retract admin rights from other colleagues 18
 8.8 Regrant access to the message history of a user 18
 8.9 Gain access to other users’ sent and received information 18

zivver • security and privacy by design P. 4

Introduction

We empower users and organizations
to protect their sensitive digital
communications,	effortlessly.

Most people think of encryption when talking
about secure communication. They think of
hackers being their primary risk. However,
in practice, most data leaks are caused by
human error, such as sending information
to the wrong person.

So, looking at encryption alone is a very limited
way of considering secure communication. It
only manages the ‘during’ sending risk, while
leaving the issue of human error before and
after sending untouched.

Although encryption is not the panacea, it is an
important line of defense. However, it should be
used in the correct way and knowledge about
the topic is often limited.

In this paper, we outline how Zivver uses
encryption to ensure that only the appropriate
sender and recipients can read the secure
messages sent via our platform.

A quick Google search defines encryption as
follows: “Encryption is the process of encoding
a message or information in such a way
that only authorized parties can access it.
Encryption does not prevent interference, but
denies the content to a would-be interceptor.”
This is exactly what we do. We ensure that the
data of our users and their contacts is safe. In
effect, this means that sensitive data should
also be inaccessible to Zivver - meaning we are
neither a possible source of data leaks, nor an
attractive target for hackers.

We don’t have possession of the keys needed
to decrypt information. This requires the use of
encryption algorithms reliant on separate keys
for encryption (public keys) and decryption
(private keys), also known as asymmetric
encryption. However, strong encryption requires
the use of strong keys – in other words, a very
long password.

zivver • security and privacy by design P. 5

For those who take data security seriously, this poses a challenge: the provider cannot store the key,
but the user requires it in order to decrypt the data. So, what is a practical way of managing keys,
while remaining both user friendly and secure? This is something ‘traditional’ encryption methods,
such as PGP, failed to accomplish, as it relies on users storing their 2048 bits key somewhere safe.

1. Transport Layer Security

2. User authentication and log-in

3. Public/private key creation and
management for new users

4. Information sharing with other users

5. Information retrieval by users

6. Information sharing with guests

7. Information retrieval by guests

8. Master key options for organizations

In this paper, we outline the
principles and functionality of
this solution in all its facets,
covering:

All communication between clients and the
Zivver platform is done via an API (Application
Programming Interface) based on REST-
principles, using JSON to transmit data
objects. In this whitepaper we will sometimes
refer to API-calls to clearly explain how the
platform functions.

In order to deal with this challenge,
we found an innovative solution.

https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

zivver • security and privacy by design P. 6

1. Transport Layer Security

For all communication between clients and servers, Zivver uses TLS 1.2 and TLS 1.3, depending
on the capabilities of the user (RFC 5246).

The TLS (Transport Layer Security) protocol provides privacy and data integrity between two
communicating applications. It is the most widely deployed security protocol today, and can
be used by web browsers and other applications that require data to be securely exchanged
over a network.

https://datatracker.ietf.org/doc/html/rfc5246

zivver • security and privacy by design P. 7

2. User authentication and log-in

For user authentication and granting access to
accounts, Zivver relies on a combination of the
user providing valid credentials in the form of a
user name and a ‘secret’, usually referred to as
a password, and a second authentication factor.

2.1 Credential verification
For a user with a Zivver account, credentials
need to be provided upon account creation. For
Zivver, the user’s (primary) email address is the
username. For the secret or password, Zivver
provides the following options:

• A password chosen by the user. This
includes users of personal accounts, for
administrators, or for users of organizations
that do not use Single Sign On (SSO) to log
into Zivver.

• A secret provided by a SAML 2.0 or OICD
compliant identity provider (IdP) during the
login-call. This usually holds for users of
organizations that have Single Sign On
e.g. via ADFS setup.

Zivver technically allows logging in with both
a password and one or more secrets provided
by SAML 2.0 or OAuth 2.0 clients. For business
users, however, the organization often chooses
to only support logging in via their SSO-IdP.

Passwords are stored using BCrypt. Zivver
uses BCrypt, which has a per user unique salt
generated with a cryptographically secure
pseudo-random number generator (CSPRNG),
to store hashes of users’ secrets.

2.2 Second factor
authentication
Zivver only allows users to send messages if
their account is protected with another layer
of security, also known as second factor
authentication. For users with a non-business
account, Zivver supports logging in with an
additional SMS-code (a TOTP-based code sent
by Zivver, via an SMS-provider) or via the use
of an authenticator app compatible with the
TOTP-standard (RFC6238).

Users are required to set up this second factor
when logging in to Zivver for the first time, or
every other time the user tries to compose or
reply to a message. Part of the second factor
setup is the (strongly encouraged) possibility
to download ten, one-time use, backup codes
as a .txt file. They can be used in case the user
does not have access to the second factor
(usually a phone).

For business users, Zivver allows logging in via a
SAML-v2 authentication context. As described
in section 2.1 Credential Verification, Zivver
allows organizations to use SSO via SAML 2.0
to authenticate their users in Zivver. In addition
to username and a secret (password), Zivver
allows organizations to pass an authentication
context in the SAML response indicating whether
a user was authenticated and in which way.

https://en.wikipedia.org/wiki/OAuth
https://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/Active_Directory_Federation_Services
https://en.wikipedia.org/wiki/Bcrypt
http://CSPRNG
https://blog.zivver.eu/blog/2fa-wat-is-het-en-waarom-gebruik-je-het
https://blog.zivver.eu/blog/2fa-wat-is-het-en-waarom-gebruik-je-het
https://en.wikipedia.org/wiki/Time-based_one-time_password
https://datatracker.ietf.org/doc/html/rfc6238

zivver • security and privacy by design P. 8

This means that organizations do not require
users to log in to Zivver with a second factor in
case the IdP of the organization already required
the user to log in with a second factor. In that
case Zivver acknowledges the IdP’s additional
authentication context. Zivver does not
challenge the user for a second factor itself. In
this scenario, we help the user by not bothering
him twice without losing any aspect of security

Users are always challenged to provide proof of
possession of their account-configured second
factors. They have to provide this proof once
they log in to Zivver with valid credentials on an
untrusted device. When entering their second
factor, Zivver clients can allow users to select
an option to trust the specific device. If the user
chooses to do so, Zivver issues a unique device-
specific key that should be provided by the API
client with every login-call as a proof of being
a trusted device.

For business users Zivver allows logging in via a
SAML-v2 authentication context. As described
in section 2.1 Credential Verification, Zivver
allows organizations to use SSO via SAML 2.0 to
authenticate their users in Zivver. In addition to
username and secret (password), Zivver allows
organizations to pass an authentication context
in the SAML response indicating whether a
user was authenticated and in which way. This
allows organizations to avoid that users need
to log in to Zivver with a second factor in case
the IdP of the organization already required the
user to log in with a second factor. In that case
Zivver respects and acknowledges the IdP’s
additional authentication context. Zivver does
not challenge the user for a second factor itself.
In this scenario we help the user by not
bothering him twice without losing any aspect
of security.

Users are always challenged to provide proof
of possession of their account-configured
second factors. They have to provide this proof
once they log in to Zivver with valid credentials
on an untrusted device. When entering their
second factor, Zivver-clients can allow users
to select an option to trust the specific device.
If the user chooses to do so, Zivver issues a

unique device specific key, that should be
provided by the API-client with every login-call
as a proof of being a trusted device.

2.3 User login and future
authentication with access
and refresh tokens
After a successful login call, following the OAuth
2.0 specification (RFC6749), the API returns
both an access and a session token. The API
client must use the access token to access API
endpoints that require authentication.

The refresh token is valid for a set period of time
based on the client, and can only be renewed by
the user specifying the password. A session can
be terminated (i.e. logged out) at any moment
by presenting either the access or token to the
revoke endpoint (RFC7009). Existing session
tokens are invalidated server side, because the
token lifetime cannot be changed in retrospect
after being issued to the client.

An access token has
a short lifetime of
just minutes. If the
access token is
expired, the refresh
token must be used
to obtain a renewed
access token.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7009

zivver • security and privacy by design P. 9

3. Public/private key creation
 and management for new users

The basis of the Zivver platform is formed by the
use of a public-key cryptosystem in combination
with some other methodologies, to align as
closely as possible with the zero knowledge
objective. Whenever a new user account is
created, the following process is followed:

3.1 A new user account
is created by providing
username and password
Either the user or the organization creates a new
account by providing a username and password
as a part of the corresponding API-calls. We
also support SCIM 2.0 for account provisioning.

3.2 Create new public/
private key pair
For every new user that creates a Zivver
account, a new public/private key pair is
generated using a CSPRNG. Encryption is
performed using the RSA-algorithm (Rivest–
Shamir–Adleman, 2048 bits).

3.3 Store public key of user
The user’s public key is stored in the
Zivver platform for later use to encrypt files
and messages.

3.4 Generate derived key
based on user password
The user’s password, in combination with a
unique ‘salt’, is used to generate a hash using
PBKDF2 (Password-Based Key Derivation
Function 2). The PBKDF2 key derivation function
looks like Derived Key = PBKDF2(PRF, Password,
Salt, c, dkLen), where PRF is a pseudorandom
function of two parameters with output length
hLen (e.g. a keyed HMAC),

i Password is the user’s password from which
a derived key is generated

ii Salt is a sequence of bits, known as a
cryptographic salt

iii c is the number of iterations desired,
65,536 in the case of Zivver

iv dkLen is the desired length of the derived
key, 128 bits in the case of Zivver

http://SCIM 2.0
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/PBKDF2

zivver • security and privacy by design P. 10

3.5 Encrypt user’s
private key
We encrypt the generated private key of the
user using the AES-CTR algorithm (Advanced
Encryption System, with Counter mode, 128
bits), using the derived key from step 3.4 as a
symmetric encryption key.

3.6 Store encrypted
private key
We save the user’s encrypted private key
in our database.

3.7 Clean-up unnecessary
data
Finally, we remove all (sensitive) information
that isn’t required from memory, including the
user’s password and private key.

The above steps are conducted fully in-memory
in (any of the) Zivver servers. Therefore, neither
the user’s password nor private keys are ever
stored. It is never accessible for anyone while
‘at rest’.

An analogy of this process could be considered
as follows: Together with the user, we have
prepared a meal and written down the full
recipe. However, we cannot prepare the recipe
again without he user’s presence, as the secret
ingredient is missing: the user’s password.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)

zivver • security and privacy by design P. 11

4. Information sharing with other users

With the aforementioned procedure, the process
of sharing information with users who already
have a Zivver account is relatively easy from a
cryptographic perspective. It is done according
to the steps described in the following sections.

4.1 Cipher key generation
A new AES-CTR 128 bit cipher key is generated
for every file or message.

4.2 Symmetric encryption
of file and message
The file or message is symmetrically encrypted
with the generated key.

4.3 Asymmetric encryption
of cipher key
TThe generated key is (asymmetrically)
encrypted with the public key of all users with
whom information is shared with.

We do not encrypt the files directly with the
public keys of recipients (and sender), because
asymmetric encryption is a computational
heavy operation. As users might share large
files with Zivver (up to 1 terabyte), asymmetric
encryption would be both resource and time
consuming. Symmetric encryption (using
AES-CTR) is computationally much more
efficient. When combined with the asymmetric
encryption of the symmetric key, a high level of
security is maintained.

For symmetric encryption we use 128-bit keys,
also for computational performance. Although
AES also has 192 and 256 bit options, experts
agree that the level of security gained by the
increased bit size is purely theoretical until
quantum computing arrives, while significantly
computationally more heavy (see here and
here). Once quantum computing really sees
daylight, we will upgrade to either AES-256 or
other encryption algorithms to be released.

https://security.stackexchange.com/questions/14068/why-most-people-use-256-bit-encryption-instead-of-128-bit/19762#19762
https://security.stackexchange.com/questions/6141/amount-of-simple-operations-that-is-safely-out-of-reach-for-all-humanity/6149#6149

zivver • security and privacy by design P. 12

Login and derived key
retrieval
Every user has to log in according to the
procedure described in section 2. User
Authentication. In a login call, the API-client,
on behalf of the user, should provide the user’s
password as one of the API-call parameters.
Upon a successful login call, e.g. the Zivver
platform takes the provided password and
uses that as an input parameter to recreate the
derived key, generated with PBKDF2 described
in step 4.4. Once the derived key is recreated, it
is returned as a result parameter in the original
login call.

Information retrieval
The API-client is required to provide the
derived key, obtained in step 6.1, as a part
of every future API-call that is associated
with performing authenticated actions. Upon
retrieving a message or file, Zivver takes the
derived key from the authentication bearer and
uses it to decrypt the private key of the user
according to the steps described in section
4.5. Subsequently it retrieves the symmetrically
encrypted message or file from the object store,
and uses the user’s decrypted private key to
decrypt the key of the message or file.

In the instance of a message, the decrypted
body is returned as a response to the API-
call. In the instance of a file, the API returns
a temporary signed url allowing the client
(browser) to download the file within a short
period of time.

All of the above is performed fully in-memory.
This means that the password, derived key,
private key nor the message or file are never
stored and are thus never available ‘at rest’.
This way, Zivver ensures that information is only
readable by the intended recipients, and not by
us or anyone else.

5. Information retrieval by users

For users who already have a Zivver account,
information retrieval is performed according
to the following steps:

zivver • security and privacy by design P. 13

6.1 Provide guest information
and access rights
When sending information to a guest, Zivver
users specify a) an email address (and optional
name) and b) the access rights the guest user
must meet in order to read the message. Zivver
offers various access rights for guest users:

• SMS-code: The sender can specify a mobile
phone number to which Zivver sends a
TOTP based access code to when the guest
user attempts to access the message. For
security reasons, Zivver does not support
VOIP-phones at this time.

• Access code: Zivver allows (members of)
organizations to specify an (organization
wide), guest specific, access code, to
be (re)used by users who belong to that
organization.

• Email verification: In case the sender
does not have access to a mobile phone,
does not have an (organization) access
code, and the user does not know how to
communicate a (personal) access code
to the recipient, Zivver enables users to
utilize email verification. With this option,
the recipient receives a notification mail
which includes a link. Upon clicking the link,
the recipient receives a second email with
a temporary access link. Using this option
reduces the interception risk of a normal
email significantly, but is not equally secure
as second factor authentication; access
to someone’s email inbox is sufficient to
read a message.

6. Information sharing with guests

Information sharing with guests is far more
challenging. Guests do not have an account
and thus do not have a public/private key pair to
encrypt and decrypt their information. In order
to securely share information with guest users
and to ensure that Zivver do not hold decryption
keys, we apply the following approach:

zivver • security and privacy by design P. 14

6.2 Create new public/
private key pair per guest/
conversation
For every new guest added to a (new or
existing) conversation, a new public/private
key pair is created for use of the RSA-algorithm
(Rivest–Shamir–Adleman, 2048 bits).

6.3 Store public key for
message and file encryption
The public key of the user is stored for later
use to encrypt files and messages in that
same conversation.

6.4 Generate symmetric
key and encrypt and store
guest-conversation specific
private key
Zivver subsequently generates a new
AES-CTR 128 bit cipher key with which to
encrypt the guest-conversation specific
private key. The encrypted private key is
subsequently stored. The cipher key is not
stored, but used in the next step.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

zivver • security and privacy by design P. 15

6.5 Send out notification email with symmetric key
and username
For guests, Zivver sends a (styled and possibly organization branded) notification mail, informing
them that a specific user has sent a secured message via Zivver. This email contains a link to the
specific message/conversation.Tghe URL-parameters in the link contains the cipher key with which
the guest-conversation specific private key can be decrypted. In addition, the notification email
includes information regarding access rights selected by the sender (see section 7.1).

6.6 Wrap private key with public keys Zivver users
for replies
When a user needs to reply in a conversation in which a guest participates, it is not possible to send
the guest another notification mail about the new message as this would include the guest’s private
key for that conversation. However, the key was not stored to prohibit us as a service provider from
having possible access to the information. To manage this issue, the symmetric key (from section
7.4) of the conversation for a guest is wrapped (encrypted) with the public key of every user and
guest in that conversation. That way every one that could possibly add a reply to that conversation
is able to cryptographically access the private key of the concerning guest, which we can
subsequently include in the notification email as described in section 7.5.

zivver • security and privacy by design P. 16

7.1 Guest clicks on
notification mail
As described in section 6.5, guest users receive
a notification mail informing them about a
new message sent to them via Zivver. This
notification mail includes a link in which the
symmetric key is embedded. With this key the
guest-conversation specific private key can
be decrypted and the email address the mail
was sent to. Clicking the link will redirect to the
Zivver webapplication where it will extract the
symmetric key and email address from the link.

7.2 Guest is logged in
to Zivver
With the symmetric key and email address
from the link (see above), the Zivver web
application makes a login-call to Zivver.
If the sender has set up an access right for
the recipient (see section 7.1), the guest is
subsequently challenged to proof his/her
‘possession’ of the specified access right.

7.3 Guest can access
information
If successful, the user is logged into Zivver
and has, via the Zivver web application,
access to the message and any attached
files by providing the symmetric key to the
Zivver platform with every API-call. Therefore,
decryption of the private key and subsequently
the message and/or files can be performed in
memory and served to the user via the client.

7. Information retrieval by guests

Information retrieval by guests (users that
do not have a Zivver account, but received a
notification mail from Zivver) works according
to the steps described in the following sections.

zivver • security and privacy by design P. 17

In order to fully take this responsibility,
organizations must be able to monitor and even
access the information their employees share.
With other popular encryption services, this is
generally not possible. Their encryption is done
on client-devices with public keys, or recipients/
participants and data is not centrally stored.
Therefore organizations are unable to monitor
or access the information their employees share.
Zivver overcomes this limitation by using a
master key construction.

8.1 Creating a new
organization with an admin
Any user can create a new organization. When
this happens, the user is given administrator
rights for that organization.

8.2 Create new public/
private key pair
For every new organization, a new public/
private key pair is created. Encryption is
achieved using the RSA-algorithm (Rivest–
Shamir–Adleman, 2048 bits).

8.3 Wrapping the
private master key with
the admin key
The private master key of the organization is
wrapped (encrypted) with the (public) key of
the creating admin.

8.4 Store public key of
organization
The public key of the organization is stored.
This key is used to potentially add users to an
organization (and wrap their private keys, as
below). With the steps above, the following
operations are possible for admins:

8.5 Add users to
organization and wrap
private key
Admins can invite users to join their organization.
Admins can also create new user accounts and
automatically add them to their organization if
they belong to their organization (e.g. have an
email address with a domain that corresponds
to a domain the organization has claimed1).
If a user accepts the invite, or when a new
user is created within the organization, the
symmetric key with which their private key can
be decrypted is wrapped (encrypted) with the
organization’s master key.

8.6 Assign admin rights to
other colleagues
Admins can assign admin rights to other users
within their organization. In this case, the
organization master key is decrypted with
the private key of the current admin, and the
organization’s private key is subsequently
wrapped with the (public) key of the newly
assigned admin.

8. Master key options for organizations

The approach described above ensures that no-
one but the user has access to their private key.
This, however, is not ideal for organizations.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

zivver • security and privacy by design P. 18

8.7 Retract admin rights
from other colleagues
Admins can demote admins to normal users.
In that case the user in question (public) key
wrapped organization master key is deleted.

With the master key principles, Zivver
cryptographically enables admins (those users
that have a (public) key that is a wrapped
version of the organization master key) to gain
access to the sent or received information of
users. With these possibilities admins can:

8.8 Regrant access to the
message history of a user
As described in section 4, the password of the
user is the key to access their private key, which
is required for message and file decryption. In
case a business user loses their password (e.g.
when organizations do not use SSO, or SSO-
configuration is lost), the user can not regain
access to the message history. As Zivver does
not have access to the user’s private key, we
cannot grant user access. However, as the
admin indirectly has access to the user’s private
key, they are able to do so. Zivver thus provides
admins with the option to:

i decrypt the derived symmetric key from
the old password using the master key

ii decrypt the derived symmetric key from
the new password

iii decrypt all old private keys with the old
derived key

iv re-encrypt all these private keys with
the derived symmetric key from the
new password

Users can then re-access their messages and
files sent and received before their password
was reset.

8.9 Gain access to other
users’ sent and received
information
In the instance of a data breach or fraudulent
action of a user, Zivver provides admins with the
possibility to gain access to a user’s messages
or files by:

i allowing admins to add themselves as
delegates to the user’s account

ii login in to the user’s account via account
delegation

iii viewing the messages and/or files with
the delegated access

All of the above
actions are logged
by Zivver into
an organization
specific	audit	and	
communication
log, available to
all admins of the
organization.
1. Zivver allows admins to claim the domains (e.g. top-
level domains). This is done by sending a verification
code to one of the following email aliases: admin@,
administrator@, hostmaster@, postmaster@ or
webmaster@the domain to be claimed. That verification
code can be entered in the Zivver web application (or by
any other API-client) which Zivver considers proof of the
possession of the specified domain.

zivver • security and privacy by design P. 19

linkedin.com/company/zivverlinkedin twitter @zivver_enfacebook facebook.com/zivver

Zivver
59-60 Gainsborough House,
Thames Street Windsor,
Berkshire, SL4 1TX
United Kingdom

+44 (0) 203 285 6300
contact@zivver.com

www.zivver.com

https://www.linkedin.com/company/zivver/
https://twitter.com/zivver_nl
http://www.zivver.com
https://www.facebook.com/zivver/
http://www.zivver.com
http://www.zivver.com

	Button 1:
	Button 3:
	Button 2:
	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:
	Button 16:
	Button 17:
	Button 18:
	Button 19:
	Button 20:
	Button 21:
	Button 22:
	Button 23:
	Button 24:
	Button 25:
	Button 26:
	Button 27:
	Button 28:
	Button 29:
	Button 30:
	Button 31:
	Button 32:
	Button 33:
	Button 34:
	Button 35:
	Button 36:

