
The Architect’s Guide  
to Implementing  
Event-Driven Architecture

Start Event-Enabling Your Enterprise by Taking These Six Steps

Sumeet Puri 
Chief Technology Solutions Officer



The Architect’s Guide to Implementing Event-Driven Architecture2

Sumeet Puri
Chief Technology Solutions Officer

© Solace
All rights reserved. No part of this work may be reproduced, or stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, or otherwise without permission from Solace. For 
inquiries about permissions, contact: legal@solace.com

As businesses become more  
real-time and focus more on the 
customer experience, application 
architecture needs to be upgraded  
to meet these needs, and event-driven 
architecture is the great paradigm.”



The Architect’s Guide to Implementing Event-Driven Architecture3

Table of Contents

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4

The Event-First Mindset   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5

Step 1: Culture, Awareness, and Intent  .  .  .  .  .  .  .  .  .  .  .7

Step 2: Identify Candidates for Real-Time  .  .  .  .  .  .  .  .  .8

Step 3: Build Your Eventing Foundation   .  .  .  .  .  .  .  .  .  .9

Step 4: Pick a Pilot Application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .15

Step 5: Decompose the Event Flow Into 
Asynchronous, Event-Driven Microservices  .  .  .  .  .  .17

Step 6: Get a Quick Win   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .27

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .28

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture4

Introduction

If your company is like most, the applications that power your 

business run in diverse environments, including on-premises 

datacenters, field offices, manufacturing floors, and retail stores – 

to name a few. 

The lack of compatibility and connectivity between these environments forces your  

applications to interact via tightly-coupled synchronous request/reply interactions, 

individually customized batch-oriented ETL processes, or even bespoke integration.  

These interactions result in slow responses and stale data. Tight coupling hampers agility 

with your ever-changing business needs and real-time demands. 

For an enterprise to be real-time, events must be streamed between the applications  

and microservices that process them so insights can be gleaned and decisions can be made 

– fast. To become more responsive and to take advantage of new technologies (cloud, IoT, 

microservices, etc.), your enterprise architecture needs to support real-time, event-driven 

interactions. 

Every business process is basically a series of events. An “event” can broadly be described 

as a change notification. These changes can have a variety of forms, but all have the 

common structure of an action that has occurred on an object. Event-driven architecture 

is just a way of building enterprise IT systems that lets loosely coupled applications and 

microservices produce and consume these events. 

Implementing event-driven architecture is a journey, and like all journeys it begins with  

a single step. To get started down this path, you need to have a good understanding of your 

data, but more importantly, you need to adopt an event-first mindset. 

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture5

Sumeet Puri, chief technology and solutions officer, will explain a surefire strategy for 

how your enterprise can implement event-driven architecture with the appropriate tools 

to overcome challenges you may run into along the way. With his field-proven six-step 

process, you will be on your journey to getting key stakeholder engagement and trans-

forming your entire organization.

The Event-First Mindset

Event-driven architecture is not new; GUIs and capital markets trading platforms have 

always been built this way. The reality is that it’s just becoming more mainstream now. 

This is primarily because service-oriented architecture (SOA); extract, transform and load 

(ETL); and batch-based approaches need to evolve to meet real-time needs.

But before you begin this journey to transform your enterprise architecture into a more 

responsive, agile, and real-time architecture, you must come to think of everything that 

happens in your business as a digital event, and think of those digital events as first-class 

citizens in your IT infrastructure.

With event-driven architecture, applications and microservices talk through events or 

event adapters. Events are routed among these applications in a publish/subscribe manner 

according to subscriptions that indicate their interest in all manner of topics.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture6

In other words, rather than a batch process or an Enterprise Service Bus (ESB) orches-

trating a flow, business flows are dynamically choreographed based on each business logic 

component’s interest and capability. This makes it much easier to add new applications,  

as they can tap into the event stream without affecting any other system, do their thing, 

and add value.

So how do you do that? What should your strategy be?

At a high level, if your organization wants to become an event-driven enterprise, you need 

to do these three things:

1. Event-enable your existing systems 

2. Modernize your platform to support streaming across environments

3. Alert & inform internal and external stakeholders

So the next question is: 

how do you put these steps into 

practice? The following six steps 

use the above strategy and 

have been proven to make the 

journey to event-driven archi-

tecture faster, smoother, and 

less risky in many real-world 

implementations.

Event Driven
Methodology

Culture
Awareness, &
Intent

Scale

Real Time
Candidates

Event
Streaming

Foundation

Pilot Selection &
Event Catalog

Event Driven
Design

Implement
Quick Win

01

02

03

04

05

06

07

Be Event 
Driven

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture7

Step 1: Culture, Awareness, and Intent

Are you ready, aware, and have the intent to implement event-

driven architecture?

I’m sure if you’re reading this, then the answer is “yes!” However, most mainstream people 

in IT were trained in school to think procedurally. Whether you started with Fortran or  

C like me, or Java or Node, most IT training and experience has been around synchronous 

function calls or RPC calls or Web Services to APIs – all synchronous. There are exceptions  

to the rule – capital markets front office systems have always been event-driven because they 

had to be real-time from the start! But more often than not, IT needs a little culture change.

Microservices don’t need to be calling each other, creating a distributed monolith. As an 

architect, as long as you know which applications/microservices consume and produce 

which events, you can just choreograph using a publish/subscribe event broker – or a 

distributed network of brokers (also known as an event mesh) – rather than orchestrate 

with an ESB.

It’s important to ponder a little, read up, educate yourself, and educate stakeholders  

about the benefits of EDA: agility, responsiveness, and better customer experiences.  

Build support, strategize, and ensure that the next project – the next transformation,  

the next microservice, the next API – will be done the event-driven way.

You will need to think about which use cases can be candidates, look at them through  

the event-driven lens, and articulate a go-to approach to realize the benefits.

Think real-time. Think event-driven.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture8

Step 2: Identify Candidates for Real-Time

Not all systems need change or can be changed to real-time.  

But the majority will benefit from an event-driven approach. 

You’ve probably already thought about a bunch of projects, APIs, or candidates that would 

benefit from being real-time.

What are the real-time candidates in your enterprise? The troublesome order 

management system? The next generation payments platform that you are building? 

Would it make better sense to push master data (such as price updates or PLM recipe 

changes) to downstream applications, instead of polling for it? Are you driven by the possi-

bility of a real-time airline loyalty points upgrade upon the scanning of a boarding pass?  

Or real-time airport ground operations optimization?

There will be multiple candidates with different priorities and challenges, so look for 

projects which will:

• Remove pain (i.e., brittleness, perfor-

mance issues, new functionality)

• Cause a medium to high business 

impact

• Serve as a quick win that will deliver 

business value and breathe optimism 

into your team

By starting with one small project, you can begin to find the quirks unique to your organi-

zation that will inevitably be present at a larger scale. Keep in mind that not every data 

source is a candidate for event-driven architecture. Find a system that has robust data 

generation capabilities and can be easily modified to submit messages. These messages 

will be harnessed as your events later in the journey.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture9

Make a shortlist of real-time candidates for your event-driven journey. It’s also important 

to bring in the stakeholders at this early stage because events are often business-driven, 

so not all your stakeholders will be technical. Consider which teams will be impacted by 

the transformation, and which specific people will need to be involved and buy-in to make 

the project a success from all sides.

Step 3: Build Your Eventing Foundation

And now the tooling. Once the first project is identified, it’s time  

to think about architecture and tooling. 

An event-driven architecture will depend on decomposing flows into microservices,  

and putting in place a runtime fabric that lets the microservices talk to each other in  

a publish/subscribe, one-to-many, distributed fashion.

It’s also important to start the design-time right, and have the tooling to ensure that 

events can be described and cataloged, and have their relationships visualized.

You’ll want to have an architecture that’s modular enough to meet all of your use cases, 

and flexible enough to receive data from everywhere that you have data deployed 

(on-premises, private cloud, public cloud, etc.). This is where the eventing platform comes 

in with the event mesh runtime.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture10

Having an eventing platform in place (even the most basic pieces of it) allows your first 

project to leverage it as microservices and events start to come online and communicate 

with each other, rather than via REST, resulting in a distributed monolith.

The following runtime and design-time pieces are essential:

• Event Broker

• Event Mesh

• Event Portal 

• Event Taxonomy

Event Broker
An event broker is the fundamental runtime component for event routing in a publish/

subscribe, low latency, and guaranteed delivery manner. Applications and micros-

ervices are decoupled from each other and communicate via the event broker. Events 

are published to the event broker via topics following a topic hierarchy (or taxonomy), 

correspondingly subscribed to by one or more applications or microservices, or analytics 

engines or data lakes. 

An ideal event broker uses open protocols and APIs to avoid vendor lock-in. With open 

standards, you have the flexibility of choosing the appropriate event broker provider over 

time. Think about the independence TCP/IP gave to customers choosing networking gear 

– open standards made the internet happen. By leveraging the open source community, 

it’s easier to create on-the-fly changes, and you’re not stuck having to consult closed 

documentation or sit in a support queue. 

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture11

Lastly, an ideal event broker is simple. It offers simplicity in deployment, event governance, 

and scalability, which gives you the freedom to focus on what matters: your events.

Event Mesh
While you might start with a single event broker in a single location, modern applications 

are often distributed. Whether it’s on-premises, in multiple clouds, or in factories, branch 

offices, and retail stores – applications, microservices, and insight capabilities  

are distributed.

An event originating in a retail store may have to go to the local store’s systems, the 

centralized ERP, the cloud-based data lake, and to an external partner. As such, event 

distribution should be transparent to producers and consumers – they should be 

connecting to their local event broker, just like you or I would connect to our home  

WiFi router to access all websites, no matter where they are hosted. 

Event-driven architecture is a constantly evolving system, so if you identify event sources 

on-premises today, you may find that those events live in the cloud tomorrow.

An event mesh is a network of event brokers that dynamically routes events between 

applications no matter where they are deployed – on-premises or in any cloud or event  

at IoT edge locations. Just like the internet is made possible by routers converging routing 

tables, the event mesh converges topic subscriptions with various optimizations for 

distributed event streaming.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture12

There are multiple ways an event mesh supports your application architecture:

• Connects and choreographs microservices using publish/subscribe, topic filtering, 

and guaranteed delivery over a distributed network

• Pushes events from on-premises to cloud services and applications

• Enables digital transformations for Internet of Things (IoT)

• Enables Data as a Service (DaaS) across lines of business for insights, analytics,  

ML, and more

• Gives you a much more reactive and responsive way to aggregate events 

Of course, how you deploy your event mesh will help determine the kind of event broker 

you’re looking for.

Event Portal
An event portal – just like an API portal – is your design and runtime view into your event 

mesh. An event portal gives architects an easy GUI-based tool to define and design events 

in a governed manner, and offers them for use by publishers and subscribers. Once you have 

defined events, you can design microservices or applications in the event portal and choose 

which events they will consume and produce by browsing and searching the event catalog.

As your events get defined, they are enlisted in an event catalog for discovery. An event 

catalog gives you visibility into your events. Although it’s more of a documentation step, 

this will help to visualize and describe the events that you’re able to process. When 

building out the system for more event sources and different ways to consume them, the 

catalog is a great reference to know what’s already been built so you can avoid duplication 

of effort.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture13

Event Taxonomy
Topic routing is the lifeblood of an event-driven architecture. Topics are metadata of 

events; tags of the form a/b/c – just like an HTTP URL or a File Path – which describe 

the event. The event broker understands topics and can route events based on who 

subscribed to them, including wildcard subscriptions. 

As you start your event-driven architecture journey, it’s important to pay attention to 

topic taxonomy – setting up a topic naming convention early on and governing it. A solid 

taxonomy is probably the most important design investment you will make, so it’s best not 

to take shortcuts here. Having a good taxonomy will significantly help with event routing, 

and the conventions will be obvious to application developers. For more on topic hierarchy 

best practices, visit: bit.ly/topic-hierarchy

Udders Ice Cream Example: Event Taxonomy 

Let’s look at an order example for Udders Ice Cream. An order for the flavor rum & raisin 

has come in from the Lazada ecommerce website in Singapore:

Event Topic

New Order order/init/1.1/icecream/udders/rumraisin/sg/lazada

Validated Order order/valid/1.1/icecream/udders/rumraisin/sg/lazada

Order Shipment order/shipped/1.1/icecream/udders/rumraisin/sg/lazada

http://solace.com
https://bit.ly/topic-hierarchy


The Architect’s Guide to Implementing Event-Driven Architecture14

Organizational Alignment
Event-driven architecture starts small and grows, but over time, the organization must 

evolve to event-first thinking. This requires some thought leadership to get buy-in. The 

ESB team needs to start thinking about choreography rather than orchestration. The API 

teams need to start thinking about event-driven APIs rather than just request/reply.

Because events from the publisher (microservice, application, legacy-to-event adapter) 

have topics as metadata, consumers can use it to subscribe to events.

Event Publisher Subscriber

New Order Lazada ecommerce  
store site Order validation microservice

Validated 
Order

Order Validation 
Microservice

Order processor for ice creams  
in Singapore

Order 
Shipment Any upstream Data lake or AI/ML ingestor

Topic subscriptions would be:

• Consume and validate all orders of version 1.1 and publish the order valid 
message: order/init/1.1/> 

• Consume and process all valid orders for ice cream originating in Singapore:  
order/valid/*/icecream/*/*/sg/*

• All orders no matter what stage, category, location: order/>

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture15

Step 4: Pick a Pilot Application

The next step for implementing your event-driven architecture  

is to determine which event flow to get started with first. 

Essentially, an event flow is a business process that’s translated into a technical  

process. The event flow is the way an event is generated, sent through your broker,  

and eventually consumed.

Getting started with a pilot project is the best way to learn through experimentation 

before you scale.

With the pilot, as you identify events and the event flow, the event catalog will also 

automatically start taking shape. Whether you maintain the catalog in a simple spreadsheet 

or in an event portal, the initial event catalog also serves as a starting point of reusable 

events – which applications in the future will be able to consume off the event mesh.

You want to choose a flow that makes the most sense for your current state modern-

ization or pain reduction. An inflight project or an upcoming transformation make ideal 

candidates, whether it’s for innovation or technical debt reduction via performance, 

robustness, or cloud adoption. The goal is for it to become a reference for future imple-

mentations. Pick a flow that can be your quick win.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture16

Consider this product price change flow as an example:

The price change itself is considered the event – ‘price’ being the noun, and ‘change’ being 

the verb. 

In an existing architecture that is not event-enabled, the price change event is:

• Not pushed – a Request/Reply API is required, or probably even a batch process

• Not real-time – downstream applications don’t know about the price change until 

they ask

• Not cost effective to scale

• Bursty – event applications continuously call the API, which can cause load/burst

By event-enabling the price change and implementing event-driven architecture with an 

event mesh, downstream apps subscribe to the price change events and receive event notifi-

cations as they happen in real-time. The event mesh filters and only pushes the events that 

the downstream applications have subscribed to (in accordance with the topic taxonomy). 

Price Change
EVENT

E
SB A
P

I

Exposure
Price API

GetPrice
Request Reply

API

GetPrice
Request Reply

API

GetPrice
Request Reply

API

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture17

Events are queued and throttled to reduce load, making it easier to scale. They are also 

delivered in a lossless, guaranteed manner.

Step 5: Decompose the Event Flow Into 
Asynchronous, Event-Driven Microservices

Once pilot flows have been identified and an initial event catalog  

is starting, the next step is to start an event-driven design by 

decomposing the business flow into event-driven microservices, 

and identify events in the process.

Decomposing an event flow into microservices reduces the total effort required to ingest 

event sources, as each microservice will handle a single aspect of the total event flow. 

New business logic can be built using microservices, while existing applications – SAP, 

mainframe, custom apps – can be event-enabled with adapters.

Price 
Change
EVENT

Expose
Price EVENT

API

E
SB A
P

I

Also exposed Request
Reply APIs

Publish Event to the Event Mesh

Subscribe for
Price Eupdate

EVENT

Subscribe for
Price Eupdate

EVENT

Subscribe for
Price Eupdate

EVENT

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture18

Microservices Orchestration vs. Choreography
There are two ways to manage your microservices in your event flows: orchestration 

and choreography. With orchestration, your microservices work in a call-and-response 

(request/reply) fashion, and they’re tightly coupled, i.e., highly dependent on each other, 

tightly wired into each other. With event routing choreography, microservices are reactive 

(responding to events as they happen) and loosely coupled — which means that if one 

application fails, business services not dependent on it can keep on working while the 

issue is resolved. 

In this step, you’ll need to identify which steps have to occur synchronously and which 

ones can be asynchronous. Synchronous steps are the ones that need to happen when  

the application or API invoking the flow is waiting for a response, or blocking.

Asynchronous events can happen after the fact and often in parallel – such as logging, 

audit, or writing to a data lake. In other words, applications that are fine with being 

“eventually consistent” can be dealt with asynchronously. The events float around, and 

microservices choreography determines how they get processed. Because of these 

key distinctions, you should keep the synchronous parts of the flow separate from the 

asynchronous parts.

This modeling of event-driven processes can be done manually at first or with an event 

portal, where you can visualize and choreograph the microservices.

http://solace.com
https://solace.com/blog/microservices-choreography-vs-orchestration/
https://solace.com/blog/microservices-choreography-vs-orchestration/


The Architect’s Guide to Implementing Event-Driven Architecture19

One of the problems with a RESTful synchronous API-based system is that each step of 

the business flow – each microservice – is inline. When the Udders Ice Cream POS system 

submits an order, should it wait for all the order processing steps to be completed, or 

should only a few mandatory steps be inline? 

If you think about it, all the “insights” processes do not need to happen before the point 

of sale systems get an order confirmation – they are just going to slow down the overall 

response time. In reality, only the order ingestion and validation need to be inline – 

everything else can be done asynchronously.

The event mesh provides guaranteed delivery, so the non-inline microservices can get the 

data a little after the fact, but in a throttled, guaranteed manner. The event stream flows 

into the systems in a parallel manner, thereby further improving performance and latency. 

Udders Ice Cream Example: Eventually Consistent

Payment
Processor

Microservice

Payment
Processor

Microservice

Inventory
Check

Microservice

Credit Check
Microservice

Insights
AI ML

Microservice

Data Lake
Ingestor

Microservice

Cross Sell
Upsell

Microservice

Synchronous,
Parallel Path

Eventually Consistency
Deferred Execution

Order
Validator

Microservice

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture20

Parasitic Listeners
As events are flowing and are cataloged, they can also be consumed by analytics, audits, 

compliance, and data lakes. Authorized applications will receive a wildcard-based, filtered 

stream of events in a distributed manner – with no change to the existing microservice, 

and no ESB or ETL changes. 

Event Sources and Sinks –  
Dealing with Legacy Applications
There are a couple of event sources and sinks that you should be aware of. Some sources 

and sinks are already event-driven, and there’s little processing you’ll need to do to 

consume these events. Let’s call the others “API-ready.” API-ready means they have  

an API that can generate messages that can be ingested by your event broker, usually 

through another microservice or application. Although there’s some development effort 

required, you can get these sources to work with your event broker fairly easily. Then 

there are legacy applications that aren’t primed in any way to send or receive events, 

making it difficult to incorporate them into event-driven applications and processes.

Click to Tweet!
Event-driven architecture starts small and grows, but over time,  

the organization must evolve to event-first thinking.

http://solace.com
https://ctt.ac/jS9uI


The Architect’s Guide to Implementing Event-Driven Architecture21

Here’s a breakdown of the three kinds of event sources and sinks:

Event-Driven Applications
Event-driven applications can publish and subscribe to events, and are topic and taxonomy 

aware. They are real-time, responsive, and leverage the event mesh for event routing, 

eventual consistency, and deferred execution.

API-Ready Applications
While API-ready applications may not be able to publish events to the relevant topic,  

they can publish events that can be consumed via an API. In this case, an adapter micros-

ervice can be used to subscribe to the “raw” API (an event mesh can convert REST APIs  

Event-Driven API-Ready Legacy

API Status? Natively event-
driven

Have a REST/SOAP 
API, with schemas

No standards-based API, 
though there might be 

various ways to connect

Push/Pull 
Abilities?

Can push 
events, can 
consume 

events

Request/reply,  
no notion of topics  

or push

Data needs to be pulled, 
or polled, but may  
also be triggered

Adapters 
for 

Streaming?

None needed Need microservices 
or streaming 

pipeline to transform 
request-reply source 

into a streaming 
destination, and 

publish intelligent topic

Need an integration 
adapter (JDBC, MQ, JCA, 

ASAPIO, Striim, legacy 
ESBs) installed close to 

the source of  
the destination of the 

event to transform and 
pub/sub events

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture22

to topics), inspect the payload, and publish the message to appropriate topics derived 

from the contents of the payload. This approach works better than content-based routing,  

as content-based routing requires the governance of payloads in very strict manners 

down to semantics, which is not always practical.

Legacy Applications
You’ll probably have quite a few legacy systems that are not even API-enabled. As most 

business processes consume or contribute data to these legacy systems, you’ll need to 

determine how to integrate them with your event mesh. Are you going to poll the system? 

Or invoke them via adapters when there is a request for data or updates? Or are you going 

to off-ramp events and cache them externally? In any case, you’ll need to figure out how to 

event-enable legacy systems that don’t even have an API to talk to.

The key to accommodating legacy systems is identifying them early and getting to work on 

them as quickly as possible.

For more details and examples, visit: bit.ly/sources-and-sinks.

Go Cloud-Native As You Can
The accessibility and scalability of the cloud reflects that of an event mesh. They’re perfect 

candidates to deploy together. That said, you can’t expect to have all of your events 

generated or processed in the cloud. To ignore on-premises systems would be a glaring 

oversight. With an event mesh implemented, it doesn’t matter where your data is, so you 

can more easily take a hybrid approach.

For example, your data lake might be in Azure while your AI and ML capabilities might 

be in GCP. You might have manufacturing and logistics in China or Korea and a market 

http://solace.com
https://bit.ly/sources-and-sinks


The Architect’s Guide to Implementing Event-Driven Architecture23

in India or the USA. With 5G about to unleash the next wave of global connectivity, your 

event-driven backbone needs to work hand-in-hand with two patterns, 180 degrees apart: 

hybrid/multi-cloud and an intelligent edge.

By using standardized protocols, taxonomy, and an event mesh, you are free to run 

business logic wherever you want.

Udders Ice Cream Example: Order Management

An order management process for Udders Ice Cream may see these microservices in an 

event flow following a point of sale:

• Order validator

• Credit check

• Inventory check

• Payment processor

• Order processor

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture24

An order for rum raisin ice cream is initiated when a point of sale system makes an API 

call to submit it:

The Order Validator microservice consumes the new order event, and produces the 

valid order, or invalid order event. The valid order event is then consumed by the Credit 

Check microservice, which similarly produces the next events.

Publish Order Event

Store

Order INIT Event

Topic [or REST URL]

order/init/1.1/icecream/udders/rumrasin/sg/711

Payload:

010010101010001010101011110101010101010

010010101010001010101011110101010101010

• Subscribed Events: all order initiations, irrespective of version and product

• Published Events: order validation status with other meta data

Published Event:

order/valid/1.1/icecream/udders/rumrasin/sg/711

Subscribed Event:

order/init/1.1/*/*/*/sg/>

Published Event:

order/invalid/1.1/icecream/udders/rumrasin/sg/711

Order
Validator

Microservice

Order Init Event OrderValid Event

OrderInvalid Event

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture25

Udders Ice Cream Example: Event Routing

Issue: Order validation rules have been changed from Singapore to the US and payload 

has changed from JSON to protobufs.

Solution: A new (reused) microservice is created to serve the business logic of 

validating orders from the US with the new payload and rewire topic subscriptions. 

The new microservices start listening to the relevant topic, consuming order initiation 

events from US of the version 1.2. Nothing  

else changed!

Subscribed Events:

All orders initiations, for payload

version 1.2, from USA

order/init/1.2/*/*/*/us/>

Order
Validator

Microservice

Order Init Event OrderValid Event

OrderInvalid Event

Order
Validator

Microservice

Order Init Event OrderValid Event

OrderInvalid Event

Subscribed Events:

All orders initiations, for payload

version 1.2, from Singapore

order/init/1.1/*/*/*/sg/>

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture26

Issue: Want to monitor all orders coming from the 711 chain. 

Solution: Implement a microservice with the relevant Insights business logic, look up 

the event in the event catalog, and start subscribing to events using wildcards! 

Subscribed Events:
Only Udders orders initiations,

irrespective of version and product, 

and country, but from 711

Subscribed Event:

order/init/1.1/*/udders/*/*/711

Udders
Icecream
Analytics

Microservice

Order Init Event OrderValid Event

OrderInvalid Event

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture27

Step 6: Get a Quick Win

Once the design is done and the first application gets delivered  

as an event-native application, the event catalog also starts to  

get populated.

Getting a quick win with the event catalog as a main deliverable is just as important  

as the other business logic, and it drives innovation and reuse.

Hopefully, with the ability to do more things in real-time, you can demonstrate agility  

and responsiveness of applications, which in turn leads to a better customer experience. 

With stakeholder engagement, you can help transform the whole organization!

Bonus Step: Rinse & Repeat

Now that you have your template for becoming event-driven  

and hopefully your first quick win in place, you can rinse and repeat.  

Go ahead and choose your next event flow!

From here, you can walk through the steps again for the next few projects. As you go, the 

event catalog in your event portal will be populated with more and more events. Existing 

events will start to get reused by new consumers and producers. A richer catalog will open 

up more opportunities for real-time processing and insights.

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture28

Culture change is a constant but gets easier with showcasing success. The integration/

middleware team might own the event catalog and event mesh, while the application and 

LOB teams use it/contribute to it. LOB-specific event catalogs and localized event brokers 

are also desirable patterns, depending on how federated or centralized the organization’s 

technology teams and processes are.

As you scale, more applications produce and consume events, often starting with reusing 

existing events. That is how the event-driven journey snowballs as it scales!

Conclusion

Constantly changing, real-time business needs demand one thing: 

digital transformation. The world is not slowing down, so your best 

bet is to identify ways you can – cost effectively and efficiently – 

upgrade your enterprise architecture to keep up with the times.  

But it’s not an easy task. 

Most people in IT were trained in school to think procedurally. Whether you started 

with Fortran or C or Java or Node, most IT training and experience has been around 

function calls, RPC calls, Web Services, APIs, or ESB orchestrating flows – all synchronous. 

Naturally, dealing with the world of asynchronous messaging requires a little culture 

change, a little thought process switch. 

Microservices don’t need to be calling each other, creating a distributed monolith. Events 

can float around on an event mesh to be consumed and acted upon by your microservices. 

http://solace.com


The Architect’s Guide to Implementing Event-Driven Architecture29

Architects and developers need a platform and a set of tools to help them work together 

to achieve the real-time, event-driven goals for their organizations.

With these six steps, you can make the leap with the correct strategy and tools in hand 

that will support your real-time, event-driven journey. Solace PubSub+ Platform helps 

enterprises design, deploy, and manage event-driven architectures and can be deployed 

in every cloud and platform as a service. Solace is the only stable and performant solution 

that fits the unique needs of architects looking to implement event-driven architecture 

within their organizations.

About Sumeet Puri
Sumeet Puri is the Chief Technology Solutions Officer at Solace, 

where he helps CIOs, CTOs and Chief Architects on their 

real-time, event-driven technology transformation journeys. 

Sumeet is a regular public speaker in technology forums.

http://solace.com
https://solace.com/products/platform/
https://www.linkedin.com/in/sumeetpuri


The Architect’s Guide to Implementing Event-Driven Architecture30

Ottawa  |  Toronto  |  New York  |  Chicago  |  Atlanta  |  Silicon Valley  |  London  |  Paris   |  Zurich 

Tokyo  |  Seoul  |  Hong Kong  |  Shanghai  |  Singapore  |  Mumbai  |  New Delhi  |  Melbourne  |  Sydney   

Follow us on

About Solace 

Solace helps large enterprises become modern and real-time by giving them everything 

they need to make their business operations and customer interactions event-driven. 

With PubSub+, the market’s first and only event management platform, the company 

provides a comprehensive way to create, document, discover and stream events from 

where they are produced to where they need to be consumed – securely, reliably, quickly, 

and guaranteed. Learn more at solace.com.

http://solace.com
https://www.linkedin.com/company/solacedotcom
https://www.facebook.com/solacedotcom
https://twitter.com/solacedotcom
https://www.instagram.com/solacedotcom
https://www.youtube.com/c/Solacedotcom
https://github.com/solacedev


The Architect’s Guide to Implementing Event-Driven Architecture31

A Few of Our Customers

Our Featured Partners

R


	_gjdgxs
	Introduction
	The Event-First Mindset
	Step 1: Culture, Awareness, and Intent
	Step 2: Identify Candidates for Real-Time
	Step 3: Build Your Eventing Foundation
	Step 4: Pick a Pilot Application
	Step 5: Decompose the Event Flow Into Asynchronous, Event-Driven Microservices
	Step 6: Get a Quick Win
	Conclusion

