Executive Summary

The Large Language Model (LLM) enterprise industry is rapidly growing with a wide range of potential applications, akin to the growth of the cloud industry in the early 2000s. Companies like Google, OpenAI, Microsoft, Amazon and IBM are developing and offering LLMs for enterprise applications such as content generation, customer service and fraud detection. These services offer a variety of benefits to customers.

- Generate personalized content, such as recommendations, chatbots, and virtual assistants.
- Improve customer service by providing customers with more accurate and timely information.
- Detect fraud by identifying patterns of suspicious behavior.
- Automate tasks that are currently performed by humans, such as data entry and customer service.
- Improve Worker Productivity by integrating with enterprise workforce tools such as emails and spreadsheets

WWT specializes in helping businesses develop and implement solutions that allow customers to identify the right LLM for their needs, train it to meet their specific requirements and integrate it into their business processes. WWT can also help develop and implement strategies for using LLMs to improve employee productivity, automate tasks and generate new revenue streams. WWT offers a variety of services to accomplish the goals of a "Buy and Build" centered solution.

- Assessment: understand the customer's needs and requirements to determine the best LLM for their use case
- Customization: help the customer train their LLM to meet their specific requirements
- Integration: facilitate the integration of LLM into customer business processes
- Strategy: develop and implement strategies for using LLMs as a part of operations

WWT can help customers get the most out of their LLM investments by avoiding common pitfalls while also adding value by enabling them to develop and implement strategies that are specific to their business needs

WWT provides comprehensive solutions for successful LLM project development and management

Expert Consulting, Integration, Support and Optimization Services drive success

Business Processes Services

Find the right partners and tools to build a successful project. We provide expert guidance on the best buy-build strategy

Partner Support

For enterprises with less cloud adoption. Procure specialized hardware, navigate enterprise cloud subscriptions – for a solution that spans the industry

Fine tune your chosen LLM, compartmentalize your data, and implement governance policies. We will help you to train your LLM responsibly,

ethically and avoid "Shadow AI" concerns

Technical Services

Tech Assessments

Our experts will assess your business requirements and recommend the best GPT/LLM solution. Our ATC helps you scale your solution to leverage your LLM investment

Al Architecture

Designed to make your training and inference processes more efficient, achieving better results & performance. We will help you deploy LLMs at scale, with security and compliance

Ethical & Responsible Al

Our expert team can help identify and mitigate ethical risks, develop policies and procedures and train employees on responsible Al

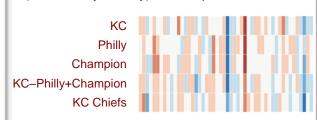
LLMs have been 75 years in the making

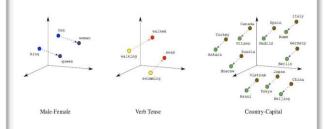
Rule-Based (1948-2003)

Neural Networks (2003-2014) Attention is All You Need (2015-2018)

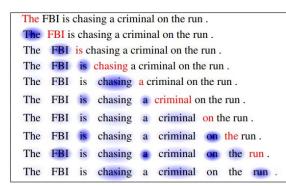
Pretrained LLMs (2018-Present)

<u>N-Grams</u> count the occurrences of a sequence of "n" words linked together in a text or **corpus**

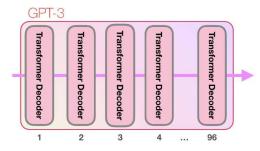

1-Gram	2-Gram	3-Gram	
The	The Margherita	The Margherita pizza	
Margherita	Margherita pizza	Margherita pizza is	
pizza	pizza is	pizza is not	
is	is not	is not bad	
not	not bad	not bad taste	
bad	bad taste		
taste			

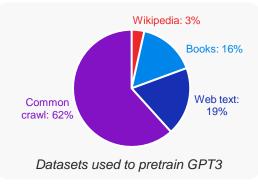

TF-IDF counts the term frequency in one doc but penalizes occurrences in other docs

sentence 1	earth is the third planet from the sun				
sentence 2	Jupiter is the largest planet				
Word	TF (Sentence 1)	TF (Sentence 2)	IDF	TF*IDF (sentence 1)	TF*IDF (Sentence 2)
earth	1/8	0	log(2/1)=0	0.0375	0
is	1/8	1/5	log(2/2)=0	0	0
the	2/8	1/5	log(2/2)=0	0	0
third	1/8	0	log(2/1)=0.3	0.0375	0
planet	1/8	1/5	log(2/2)=0	0	C
from	0	0	log(2/1)=0.3	0	0
sun	1/8	0	log(2/1)=0.3	0.0375	0
largest	0	1/5	log(2/1)=0.3	0	0.06
Jupiter	0	1/5	log(2/1)=0.3	0	0.06


Neural Language Models use a neural network to predict the words that would occur in a corpus

(Kansas City - Philly) + Champion = KC Chiefs




Attention-based Transformers break down corpuses into smaller parts (tokens) and then analyze the relationships between them

Current word is in red, and size of blue shade indicates strength of relevance

<u>LLMs</u> have several transformer units stacked together and are trained on a huge **corpus**

Limitation:

- Semantic meaning not captured
- No learning predictions limited to occurrences in the training set

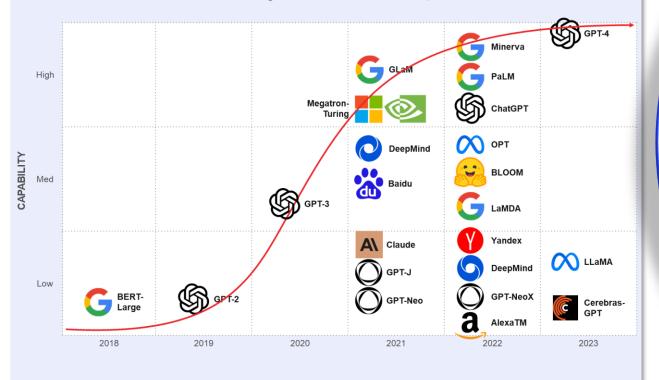
Limitation:

 Does not capture long-term memory or associations

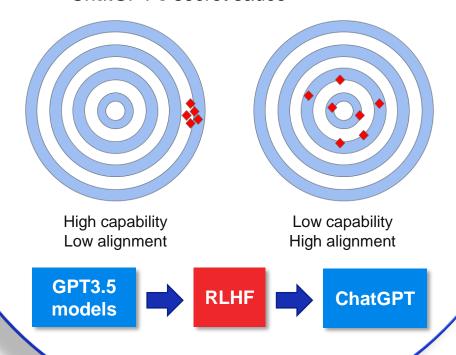
Limitation:

Requires a large corpus and larger size for greater capability

Limitation:

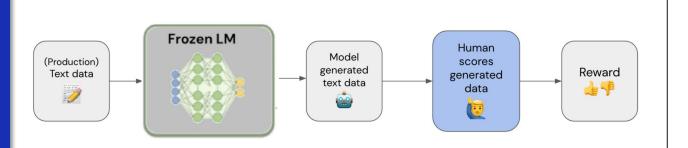

 Investment in infrastructure for training and inference

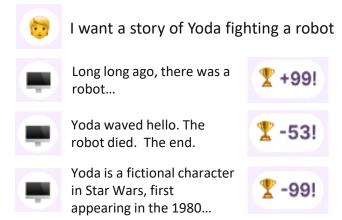
Source: WWT



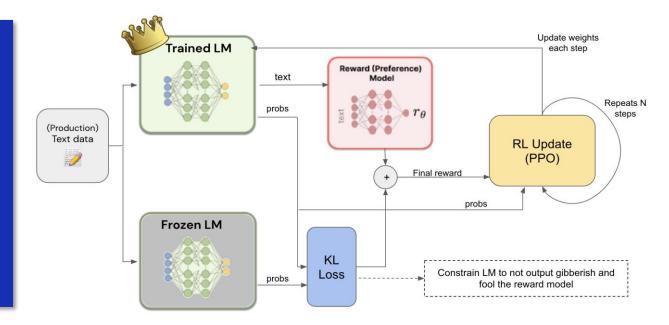
ChatGPT stands out with reinforcement learning via human feedback

The capability of an LLM is not the only factor in determining its popularity (e.g., Google's GLaM and Microsoft's Megatron have been around longer than ChatGPT)


- Models must align their outputs to the intention and instruction of the user
- This requires Reinforcement Learning from Human Feedback (RLHF) – ChatGPT's secret sauce



RLHF enables LLMs to communicate more like humans


A small dataset of prompts and human-ranked responses is used to train a reward model

2

The Reward Model teaches the LLM to fine-tune weights to follow instructions with guardrails using Reinforcement Learning

1. Frozen model's response to input prompt

Write a poem about Iron Man

I'll be a wall and shield you from danger; I'll take all the pains,

For to me they are no stranger.

2. Score the output using reward model

3. Improve the response using reward and re-generate response & reward iteratively

Billionaire Tony Stark made a metal suit; With a flamethrower and rockets in his boots.

Source: GitHub Gist

Tailored solutions for every client

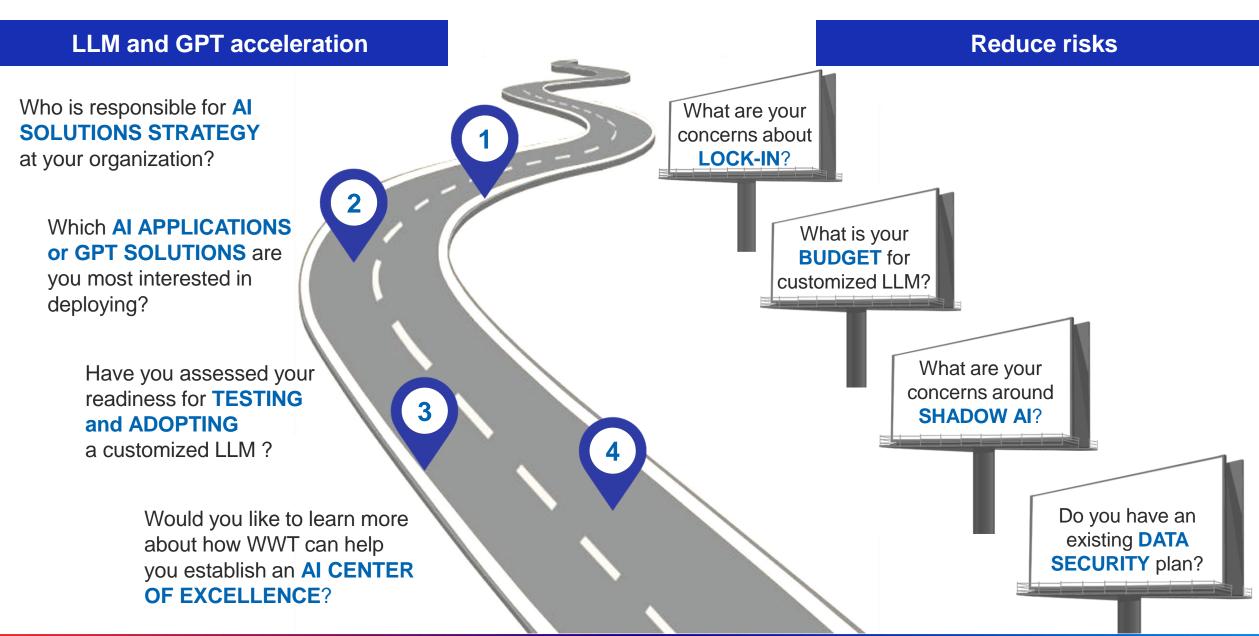
Typical questions from various customers

Training an LLM

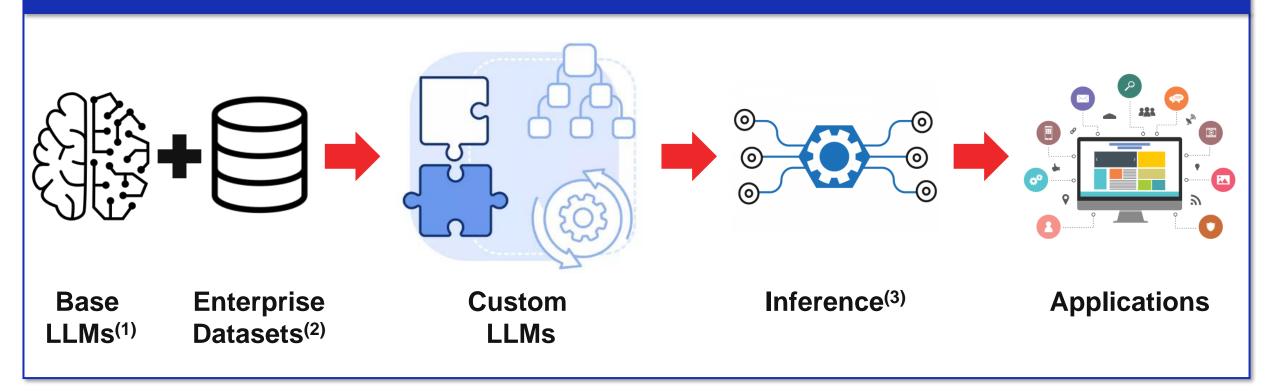
Should I train an LLM with all my old records: claims, customer correspondence, transcriptions, etc.?

Fine-tuning an LLM

Can ChatGPT truly understand my unique business when it responds to my questions?


Prompt engineering

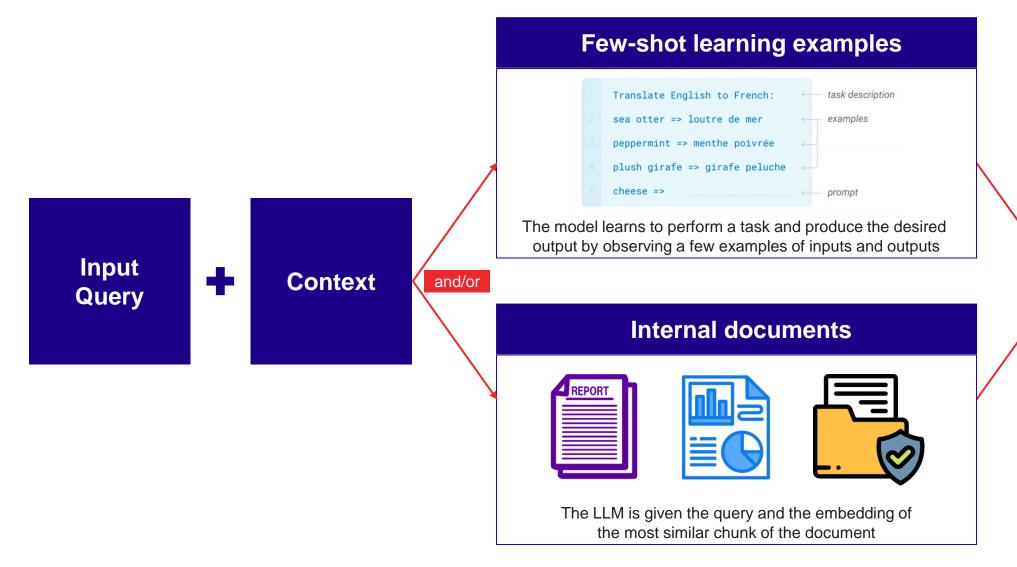
How can I use ChatGPT to help me write a SQL query given a question in English?



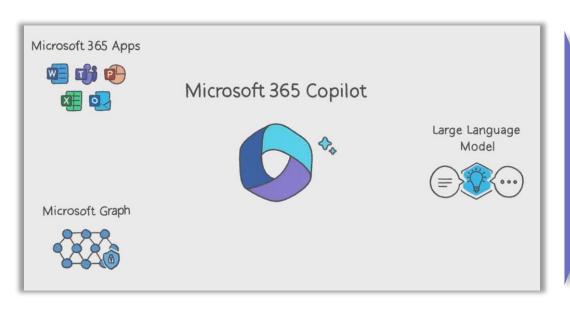
Questions to guide our clients on their LLM journey

Fine-tuning unlocks the full potential of your language model

Fine-tuning is used to modify the weights of an LLM based on information and patterns contained in large amounts of enterprise data



- (1) Base LLMs may be state of the art proprietary LLMs (paid access on Cloud) or open-source LLMs
- (2) Datasets need to be prepared and loaded appropriately to achieve fine-tuning
- (3) Inferences may be free or billed per hit depending on whether the solution is deployed on a Datacenter (resource intensive capital investment) or Cloud


Two powerful strategies to engineer prompts can be used to produce customized responses

Response relevant to context

Microsoft Copilot offers a reference for customization

You provide Copilot with directions
User types a command – aka "prompt" - into the
copilot assistant and a LLM generates a response

Microsoft 365 Copilot

Copilot retrieves 365 information with Graph

Copilot uses the Microsoft Graph to retrieve information from your enterprise Microsoft 365 app.

3 Copilot Processes 365 & Graph information

Copilot combines the response from the LLM and the information from the Microsoft Graph to generate a response

You Receive a Final Response
Copilot then sends the final response to you

Large Language Model

Source: Microsoft

WWT solution: leveraging LLMs to maximize benefits

Proprietary Applications

Software applications that are owned and controlled by a single company or individual

Custom LLM Solution

WWT design and architecture services for LLM solutions

Domain-Centric Data Formats

A way of organizing data based on the concepts and relationships that are important to the domain.

Large Language Model

Trained baseline model to be fine-tuned on proprietary data

Improved data querying

Efficient use of LLM

Time saving

Increased flexibility

WWT is exploring ethical applications of Al that impact development and LLM operations

Bias & Discrimination

Training Implicit bias into Al (discrimination, stereotypes)

Privacy

Data gathering, storage, use and IAM

Transparency

Understanding AI functions
To establish trust

Misinformation

Produce convincing but misleading information

Safety Concerns

Create damaging or violent content, or offer directions for unlawful or dangerous conduct

Accountability

Identify responsible and accountable parties for AI product and use

