
Android Sample project

To implement the Android library into your project, you must first download it from the DynConD

portal and then extract the Android library into your project's folder.

The minimum required version for the Android library to run is Android 6.0, API level 23.

For the Android library to be functional, we need Internet so the first and foremost thing to do is to

grant internet and wifi permissions in the AndroidManifest.xml file

After we have granted internet permission, we can import the Android library into our project in two

different ways (depending on the version of the Android studio that you are using).

The first way is to Go to the top menu and click File → New → New Module → Import .JAR/.AAR

Package and then go Next → Find DynConD Android library file and click Finish

The second way is to go to the top menu and click on File → Project Structure → Dependencies

+ → JAR/AAR Dependency → type in the path of the Android library folder and press Ok

It is important to note that in the last part of the build.gradle script there must be an implementation

of the specified library, and if it is not there, it is necessary to add it and synchronize the gradle.

For a successful call of DynConD’s DynConDInetAddress class, import
dyncond.dyncondlib.DynConDInetAddress statement must be placed into the activity.

DynConD’s DynConDInetAddress class is a replacement for the standard InetAddress class and has
the same basic methods and results as the InetAddress class. If no IP address is returned by the
DynConDInetAddress class, the standard non DynConD DNS A/AAAA resolving can be used.

DynConD’s DynConDInetAddress class by default uses local Android host DNS resolvers. By using the
getAllByNameADNS method with a defined service value of “100”, authoritative DynConD DNS
servers (ADNS) are used instead of local Android host DNS resolvers. This way, the real‐time DSS
parameters are obtained from servers, avoiding using cached values in the process whose accuracy
depends on the TTL value of the TXT RRs. If no IP address is returned when using the ADNS query, the
getAllByNameADNS class automatically performs a standard recursive DNS query after the Timeout
period defined in TXT RR.

DynConD Android library implementation guide

- Download the DynConD Android library from http://dyncond.com/downloads/

- For both, new or existing Android studio projects, extract the DynConD Android library into

the project folder

- DynConD Android library requires a minimum API level 23 (Android 6.0 - Marshmallow)

- In the AndroidManifest.xml, permissions for network (Internet) and WiFi must be set as:

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

- In the Android Studio, go to File -> New -> New Module -> Import .JAR/.AAR Package -> Next

-> Find DynConD Android library file -> Finish

- In the application’s build.gradle use dependencies to implement the library as follows:

implementation project(":DynConD_Library")

- For a successful call of the DynConDInetAddress function set

import dyncond.dyncondlib.DynConDInetAddress;

in Activity

- Call DynConDInetAddress function in Activity as follows:

DynConDInetAddress dynConDInet = new
DynConDInetAddress(getApplicationContext());

InetAddress[] dyncond = DynConDInetAddress.getAllByName(…);

or

InetAddress[] dyncond = DynConDInetAddress.getAllByNameADNS(…);

or

InetAddress[] dyncond = DynConDInetAddress.getbyName(…);

- DynConD’s DynConDInetAddress class is a replacement for the standard InetAddress class

and has the same methods, results and error codes as the InetAddress class

http://dyncond.com/downloads/

iOS Sample project

To implement the iOS framework into your project, you must first download it from the DynConD

portal and then extract the iOS framework into your project's folder.

The minimum required version for the iOS framework to be fully functional is iOS 10.0

Open the project editor in the project navigator, select Target, and click on the + sign in

Frameworks, Libraries, and Embedded Content. In the Framework search window, click on Add

Other ‐> Add Files and select DynConD.xcframework

By clicking on the Open button, DynConD.xcframework will be included in the project and will

be visible in Frameworks, Libraries, and Embedded Content. On the right side of the included

framework select Embed & Sign option, if it’s not already marked

For a successful call of DynConD’s dyncondgetaddrinfo function, import DynConD statement

must be placed into the controller (ViewController)

DynConD’s dyncondgetaddrinfo function is a replacement for the standard getaddrinfo function

and has the same parameters, results, and error codes as getaddrinfo function. If no IP address is

returned by the dyncondgetaddrinfo function, the standard non DynConD DNS A/AAAA

resolving can be used

DynConD’s dyncondgetaddrinfo function by default uses local iOS host DNS resolvers. By using

the dyncondgetaddrinfo function with a defined service value of “100”, authoritative

DynConD DNS servers (ADNS) are used instead of local iOS host DNS resolvers. This way, the

real‐time DSS parameters are obtained from servers, avoiding using cached values in the process

whose accuracy depends on the TTL value of the TXT RRs. If no IP address is returned when

using the ADNS query, the dyncondgetaddrinfo function automatically performs a standard

recursive DNS query after the Timeout period defined in TXT RR

DynConD iOS framework implementation guide

- Download the DynConD iOS framework from http://dyncond.com/downloads/

- For both new or existing Xcode projects, extract the DynConD iOS framework into the project

folder

- Open the project, click on Target, open General tab and click on the + sign in Frameworks,

Libraries and Embedded Content. In the Framework search window, click on Add Other -> Add Files

and select DynConD.xcframework

- By clicking on the Open button, DynConD.xcframework will be included into the project and

will be visible in Frameworks, Libraries and Embedded Content. On the right side of the included

framework select Embed & Sign option, if it’s not already marked

- For a successful call of DynConD’s dyncondgetaddrinfo function, import the DynConD

statement and it must be placed into the controller (ViewController)

- Calling the DynConD’s dyncondgetaddrinfo function:

let status = DynConDGAI().dyncondgetaddrinfo(...)

- DynConD’s dyncondgetaddrinfo function is a replacement for the standard ge taddrinfo

function and has the same parameters, results and error codes as getaddrinfo function

Load Agent installation procedure on Linux server

1. Download dyncond.conf (DynConD Load Agent configuration file) from

https://my.dyncond.com/User/LoadSetupList -> Get configuration file

2. Download Load Agent Linux binary from https://my.dyncond.com/User/LoadSetupList or

https://my.dyncond.com/Downloads/Downloads

3. Copy dyncond.conf to /etc directory

Example /etc/dyncond.conf file:

 UserID:user

 Credentials:password

 NS:ns1.dyncond.net

 NS:ns2.dyncond.net

 NS:ns3.dyncond.net

 NS:ns4.dyncond.net

 IP:198.51.100.100

 IPP:172.16.100.100

 Refresh:3

 CPU:1

 RAM:1

 LogFile:1

Explanation of dyncond.conf file:

 UserID: your username provided by DynConD portal, cannot be changed by the user

 Credentials: your username provided by DynConD portal, cannot be changed by the user

 NS: DynConD name servers to which data is sent

 IP: server public IP address

 IPP: optional server private IP address, if multiple servers share the same public IP (cluster)

 Refresh: refresh interval for sending data to DynConD NS

 CPU: if 1 CPU data is sent, if 0 CPU data is not sent

 RAM: if 1 RAM data is sent, if 0 RAM data is not sent

 LogFile: if sent data is logged to /var/log/dyncond/agent_info.log, if 0 sent data is not logged

4. Copy Load Agent dyncondagent to /usr/bin directory

5. Create dyncondagent service:

- create service configuration file:

/etc/systemd/system/dyncondagent.service

 [Unit]

 Description=DynConD agent service

 After=network.target

 StartLimitIntervalSec=0

 [Service]

 Type=simple

 Restart=always

 RestartSec=1

 User=root

 ExecStart=/usr/bin/env /usr/bin/dyncondagent

 [Install]

 WantedBy=multi-user.target

- start dyncondagent service:

systemctl start dyncondagent

- enable dyncondagent service at server boot:

systemctl enable dyncondagent

Created symlink /etc/systemd/system/multi-user.target.wants/dyncondagent.service →

/etc/systemd/system/dyncondagent.service.

- check status of dyncondagent service:

systemctl status dyncondagent

● dyncondagent.service - DynConD agent service

 Loaded: loaded (/etc/systemd/system/dyncondagent.service; enabled; vendor preset: enabled)

 Active: active (running) since Fri 2021-06-12 10:24:04 CEST; 7min ago

 Main PID: 62877 (dyncondagent)

 Tasks: 1 (limit: 2340)

 Memory: 668.0K

 CGroup: /system.slice/dyncondagent.service

 └─62877 /usr/bin/dyncondagent

Jun 12 10:24:04 test2.localdomain systemd[1]: Started DynConD agent service.

Jun 12 10:24:04 test2.localdomain env[62877]: AGENT STARTED

5. DynConD can use two log files, info and error log files

- info log example, used if LogFile:1 value is set in dyncond.conf:

/var/log/dyncond/agent_info.log

 2021-06-12 10:24:04.157 AGENT STARTED

 2021-06-12 10:24:04.167 IPV4 address: 75.119.133.81 (ns1.dyncond.net)

 2021-06-12 10:24:04.366 IPV4 address: 45.61.53.180 (ns2.dyncond.net)

 2021-06-12 10:24:04.524 IPV4 address: 52.78.162.64 (ns3.dyncond.net)

 2021-06-12 10:24:04.688 IPV4 address: 159.89.232.248 (ns4.dyncond.net)

 2021-06-12 10:24:07.708

UserID:user;Credentials:password;IP:198.51.100.100;CPU:10;RAM:30

 2021-06-12 10:24:07.708

UserID:user;Credentials:password;IP:198.51.100.100;CPU:10;RAM:30

 2021-06-12 10:24:07.709

UserID:user;Credentials:password;IP:198.51.100.100;CPU:10;RAM:30

 2021-06-12 10:24:07.709

UserID:user;Credentials:password1;IP:198.51.100.100;CPU:10;RAM:30

- log file contains information about Load Agent service start time, resolved IP addresses of DynConD

Name servers and information about all data sent to every IP address

- error log example:

/var/log/dyncond/agent_error.log

 2021-06-12 10:21:45.305 config file not exists

