
Textify: Extracting Structured Text from Images

July 17, 2017 Amer Agovic (http://reliancy.com/author/amer/)

In our previous post we showed how to apply computer vision methods to prepare an image of a

document for text extraction. To make things interesting we picked a document, a business card, that

was taken at an angle. Normally the projective distortion would make character recognition

impossible. As a solution we showed how projective distortion can be reversed to obtain nice or

rectified document devoid of any background clutter.

Welcome to Reliancy http://www.reliancy.com/blog?page=textify/main

 

1 of 5 5/19/2020, 10:55 AM



The OCR engine performs its last step on a black/white binary image. If we do not binarize the input

then OCR might do it but it might not do a good job. So we perform “thresholding” as one more step

before OCR.

Mat binary= Mat.zeros(rectified.size(),rectified.type());

Imgproc.threshold(rectified,rectified,0,255,Imgproc.THRESH_BINARY+Imgproc.THRES

H_OTSU);

For thresholding we picked Otzu’s method (https://en.wikipedia.org/wiki/Otsu%27s_method). Unlike

plain thresholding which requires us ,rightly or wrongly, to choose a thresholding value in Otzu’s

method the value is automatically chosen for us. This method assumes an image with two groups of

pixels and analyzes the histogram to find the value that best separates the two classes. Our text

document is a perfect example of such image type because white text is one category and black

background is the other. If we added colored or textured business cards our binary image would likely

have more than two categories and Otzu’s method would fail.

The end result of thresholding or binarization should look similar to this:

We emphasize “should” because we applied some additional denoising and clutter removal. As you

can see with good results in some areas and not as good in others.

At last we come to the OCR stage. We feed the binary image to Tesseract and enumerate the results

at word level:

2 of 5 5/19/2020, 10:55 AM



Scalar CONTOUR_COLOR = new Scalar(0,255,0,255);

Mat rgb = new Mat(binary.size(),CvType.CV_8UC3);

ArrayList<Word> goodWords=new ArrayList<Word>();

BufferedImage img2=toBufferedImage(binary,null); // convert OpenCV image to Jav

a BufferedImage

ITesseract ocr=new Tesseract();

ocr.setDatapath(getTesseractFolder());

int pageIteratorLevel = TessPageIteratorLevel.RIL_WORD;

List<Word> result = ocr.getWords(img2, pageIteratorLevel);

//print the complete result

for (Word word : result) {

    if(word.getConfidence()>33.0f) goodWords.add(word);

    System.out.println("W:"+word.toString());

    Rectangle bb=word.getBoundingBox();

    Rect rect=new Rect(bb.x,bb.y,bb.width,bb.height);

    Imgproc.rectangle(rgb,new Point(rect.x,rect.y), new Point(rect.x+rect.widt

h,rect.y+rect.height),CONTOUR_COLOR);

}

The preceding code section will print out detected words and will also annotate an RGB image so we

can show this:

After we group all words that seem to lie on the same line we obtain our first textual result:

    0:                          John G. Singer

    1:                           Principal

    2: Blue Spoon Consulting®

    3:    a new grammar of strategy

    4:                             Blue Spoon (insulting Gnu). LLC

    5:                                    380 W Avenu‐ &‐ Im

    6:                                      New York NY 10168

    7:                                   Phone Sin‐331m

    8:                                    johngbluupoormmm can

    9:                         www.bh:espooneonsd&lg.m

The results are good and bad. The left side of the document was clean and Tesseract did a good job.

The right side was not binarized precisely enough. Part of it is due to binarization, another part is

aliasing due to projective distortion. The image was low detail to begin with, after warping the right is

blurred as you can see from the rectified image in the Computer Vision section. Amazingly the human

eye can still distinguish and fill in the missing bits to recover the actual content. Tesseract not so

much.

We undertake one extra step. We call it “Tabulating” and it is an attempt to recover tabular structure

from the content. To that end we apply a ray casting algorithm that collects all possible tables. It

returns back one dominant table. The dominant table is the one with the most columns and rows.

3 of 5 5/19/2020, 10:55 AM



 this case the selected table or its rays are depicted below:

The resulting tabular structure and our final result are then:

The tabulation algorithm could clearly use some improving. For one it only considers left aligned

columns. Moreover it does not deal with tables inside tables. So we will stop here since tabulation is

a subject in its own right.

In this second part of our series we showed how images are prepared for character recognition, how

recognized characters are enumerated and then formatted for further processing. The Computer

Vision pre-processing and OCR stages have some limitations but perform with high reliability

otherwise. Assuming that we have fine-tuned these stages the most interesting problem then

becomes: Tabulating. That is recovering tabular structure so that we can locate content and properly

channel it later on.

If you like to see the entire process live in action check it out at Reliancy Cloud

(http://apps.reliancy.com/input/menu/main/DataCentral/Textify).

4 of 5 5/19/2020, 10:55 AM



(http://reliancy.com/author/amer)

About the Author

Amer Agovic, PhD is the President and Founder at Reliancy. He has been the

Chief Architect of the Reliancy's own software platform and has considerable

experience in structuring and leading Software Development projects. His fields of

expertise include Software Architecture, Robotics, Computer Vision and Natural

Language Processing.

© 2017 Reliancy

5 of 5 5/19/2020, 10:55 AM




