
CRYPTOGRAPHY
INVENTORY

BUILDING, MAINTAINING AND
EXPLOITING A USEFUL INVENTORY

Whitepaper v1.0
February 2020

2 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

Contents
1. What is a Cryptography Inventory 3
2. Why Maintain a Cryptography Inventory 3
2.1. Security and Resilience 3

2.2. Compliance 4

2.3. Crypto Agility 4

2.4. Cloud Migration 5

3. What should be in a Cryptography Inventory 5
3.1. Application Cryptography 5

3.2. Infrastructure Cryptography 6

4. How to make a Cryptography Inventory 6
4.1. Application Cryptography 7

4.2. Infrastructure Cryptography 8

5. Planning an Inventory Project 11
5.1. Five Questions to ask of Cryptography Inventory Tools 11

6. References 12

This document is protected by copyright. No part of the document may be reproduced or redistributed in any form
by any means without the prior written authorization of Cryptosense. This document is provided “as is" without
any warranty of any kind. Cryptosense SA cannot be held responsible for any misconduct or malicious use of this
document by a third party or damage caused by any information this document contains. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Cryptosense SA, 231 Rue Saint-Honoré, 75001 Paris France

cryptosense.com

https://cryptosense.com

3 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

1. What is a Cryptography Inventory
A cryptographic inventory is a strategic cybersecurity asset. It enables an organisation to:

 » enforce a secure cryptographic policy across IT infrastructure;

 » react quickly to security issues;

 » efficiently carry out strategic transformations, such as migrating cryptography services to the
cloud, or deploying post-quantum cryptography.

While some more sensitive organisations have maintained cryptography inventories for years,
the concept has recently become more mainstream thanks to recommendations from standards
bodies [1] and industry analysts [2], and also due to high profile incidents where more careful
cryptography management would have prevented or minimized losses [3]. At the same time,
organisations with existing inventories are looking to improve their coverage and automation to
meet new business goals.

At its most basic, a cryptography inventory can be thought of as a map of all the cryptography
deployed in an organisation. The inventory will describe what cryptography is used by which
applications for what purpose, as well as mapping cryptography use in infrastructure. It can
include details of algorithms, usage modes, keys and key storage, certificates, protocol versions,
library versions, as well as non-technical details such as data classification, business purpose, and
the name of the person responsible.

At Cryptosense, we have followed several of our customers as they create or upgrade their
cryptography inventory. We have seen that in practice, every organization’s cryptography
inventory will be a little different, depending on how and where cryptography is used relative to
the business-critical functions of the organization. Indeed, successful cryptography inventory
projects typically apply a different methodology to different parts of the application estate or
infrastructure, in order to prioritize resources to the most important areas. In this whitepaper,
we will discuss the lessons learned from these projects and the best practice approaches that will
enable you to guide your own cryptography inventory project.

2. Why Maintain a Cryptography Inventory
There are multiple business reasons to create and maintain a cryptographic inventory.

2.1. Security and Resilience

At a high level, cryptography is a risk control like any other. “Crypto risk” is the possibility of
an organisation suffering harm when cryptography doesn’t work as it should. There have been
several high profile examples of cryptography failures in the last few years, such as the $150M+
Capital One breach where the use of cryptography failed to protect personal data of millions of
users due to a key management issue, or the $200M+ Marriott Hotel breach where partial use of
encryption lead to millions of passport numbers being leaked in the clear (details of these failures
and more are available in a recent Cryptosense Webinar [3]). Failures in cryptography have also
caused availability outages, such as when Erikson failed to update a certificate in a mobile phone
network management product, causing hours of downtime for millions of users [6].

4 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

A comprehensive and up-to-date cryptography inventory can help to reduce cryptography risk by
raising the visibility of cryptography use and allowing policy control. In order to do so, it will have
to include sufficient detail to allow issues to be detected and diagnosed. Attacks on cryptography
almost never exploit a weak choice of algorithm. Instead, they “go around” the cryptography by
exploiting key-management mistakes, padding oracles, malleable encryption, repeated nonce
values etc. For a cryptography inventory to be effective in preventing these attacks, it needs to
be sufficiently detailed to control the cryptography policies that prevent these issues: tracking key
usage, use of authentication on encryption, etc.. We will discuss this further below.

2.2. Compliance

Partially in response to the incidents described above, auditors are getting more and more
particular about controlling that cryptography is being used correctly, whereas in the past they
were often satisfied just to know that cryptography was in use. Auditors under various regimes
now expect to see a cryptography policy and evidence that the policy is controlled.

For example, the PCI-DSS standard gives the requirement that cardholder data must be protected
by:

“Cryptography based on industry-tested and accepted algorithms, along with strong key lengths
(minimum 112-bits of effective key strength) and proper key-management practices”,

referring to NIST publication SP 800-57 for more detail, while the Gramm-Leach-Bliley Act (GLBA)
for US financial services customer data protection requires:

“The encryption of electronic customer information, including while in transit or in storage on
networks or systems, in case unauthorized individuals are able to gain access. The selection
of data to encrypt and the encryption technique and level should be supported by the risk
assessment.”

Increasingly, auditors are asking for evidence that these requirements are being controlled across
applications and infrastructure.

An up-to-date cryptographic inventory can greatly reduce the compliance burden around these
kinds of requirements, although it must be up-to-date and sufficiently detailed to show not just
what cryptography is in use, but also what data it is protecting and how the keys are managed.

2.3. Crypto Agility

The concept of crypto agility has risen up the agenda recently, this is primarily due to two
considerations:

 » firstly, the painful experience that many organisations went through to eliminate the use of the
broken SHA-1 hash function in the late 2010s,

 » second, the progress towards practical quantum computers that will be able to break the
asymmetric (public key) cryptography widely used across all of our systems.

Wikipedia defines crypto agility as allowing:

“an information security system to switch to alternative cryptographic primitives and algorithms
without making significant changes to the system's infrastructure.”

5 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

The recommended first step towards achieving crypto agility is knowing where your cryptography
is, i.e. having a cryptography inventory [2,4].

As well as setting out a map for migrating algorithms when required, a good cryptography
inventory identifies areas for work to remove obstacles to agility, for example hard-coded keys,
key-lengths, even hardcoded keys.

2.4. Cloud Migration

Migrating applications that handle sensitive data to the public cloud requires careful consideration
of cryptography. First, the existing cryptography used in the application likely either uses keys
stored in a physical hardware device like a Hardware Security Module (HSM) that will not be
present in the cloud data centre, or stored on the application filesystem in a way that will not
be considered adequately secure for a cloud deployment. These keys will need to be migrated
to cloud cryptography services (Key Management Services or Cloud HSMs). Infrastructure keys
present on the application’s filesystem, such as SSH keys or TLS certificates, will need migrating
or replacing. Finally, extra encryption may need to be added to data that was passed or stored
unencrypted in the on-prem data centre.

A cryptography inventory can help with this process by allowing the identification of
cryptographic keys that need to be migrated and highlighting what data is currently protected
by encryption. To be useful, it needs to include information about how keys are actually used, to
allow the selection of the right cloud cryptography service.

3. What should be in a Cryptography Inventory
Often, the business reason for conducting cryptography inventory will be some combination
of the reasons above. A cryptography inventory must cover all relevant artifacts to achieve
its purpose. Typically this will include an inventory of algorithms and keys as they are used in
applications and infrastructure. The exact details will depend on precise inventory goals. For
example, if the goal is to prepare for crypto agility, the inventory should distinguish between
algorithms used for cryptographic and non-cryptographic purposes, so as to allow for planning
and decision making during a migration [2]. If the goal is to control a cryptographic policy,
then the inventory must be as detailed as the policy. For example, if the policy allows use of an
algorithm only in the context of a specific protocol, then the inventory must include protocols.
If the policy specifies that only specific cryptography libraries be used, then the inventory must
include libraries and library versions.

3.1. Application Cryptography

In a typical enterprise, applications use cryptography to:

 » encrypt sensitive data at rest or in transit,

 » sign or verify documents and files,

 » protect passwords and credentials and access sensitive resources,

 » participate in other protocols such as single sign-on, TLS, Kerberos, etc.,

 » and often, to perform business-specific cryptography such as authorising payments.

6 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

All of this cryptography will involve particular algorithms and keys, modes of operation, protocol
versions, and cryptographic libraries. Keys and certificates will be accessed by the application
from a variety of sources such as filesystem keystores and HSMs. All of this information must be
captured in an effective cryptographic inventory.

3.2. Infrastructure Cryptography

Enterprise infrastructure typically makes extensive use of network cryptography protocols such as
TLS, IPSec and SSH. Each of these requires an infrastructure of keys and certificates that must be
included in a cryptographic inventory to meet the goals discussed above.

Items of hardware including Hardware Security Modules, VPN appliances, firewalls, and intrusion
detection systems will all contain cryptographic artifacts and capabilities to use specific
algorithms. Often these systems control the most sensitive cryptography in the organisation, i.e.
the keys used to protect the most business critical data. As such, their inclusion in a cryptographic
inventory is an important consideration.

4. How to make a Cryptography Inventory
To create a cryptography inventory, multiple challenges must be addressed:

Scale - organisations may need to inventory thousands of applications and tens or hundreds of
thousands of endpoints. This requires automation using tools that scale, and procedures that can
be distributed across the organisation. It also has a bearing on the data model to be used for the
results. For larger organisations, a hierarchical model that can be queried is more appropriate
than a flat spreadsheet that will quickly become unusably complex.

Access - whether for the deployment of cryptography inventory tools, or manual methods
such as code review, inventory construction requires cooperation from multiple stakeholders
in the organisation. Access may be needed to code, running applications in test environments,
filesystems, containers in the deployment pipeline, Cloud VMs, network endpoints, etc.. A good
inventory plan will consider not just the “what” but the “who” and aim to use time efficiently,
for example by testing out the inventory procedure for an application on a small cohort before
pushing it out to the whole estate.

Precision - false positives and false negatives drastically reduce the value of the inventory, no
matter what the inventory goals. They can lead to wasted time on unnecessary remediation work,
undetected crypto risk or non-compliance, and misplaced prioritisation for migration or agility
projects. Therefore any decisions to save on inventory resources, such as asking a third-party
vendor to self-report their product’s cryptography inventory, or using scanning tools rather
than runtime tooling to test applications, must be weighed up against the loss of precision in the
inventory and its effect on the business goals.

Prioritisation - not everything can be done at once, so an appropriate roadmap, with short
time-to-value to ensure buy-in, and realistic milestones towards completion must be identified.
Due to resource constraints, typically cryptography inventories are not uniform in their coverage
of IT assets. For example, external-facing applications treating customer data will typically require
full, precise coverage, whereas internal applications treating non-sensitive data may only require a

7 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

more basic scan, where some risk of imprecision can be accepted. This should be reflected in the
inventory project roadmap.

In the rest of this section, we examine these challenges as applied to approaches for taking
cryptography inventory in applications and infrastructure.

4.1. Application Cryptography

There are a number of possible approaches to discovering cryptography in applications.

Manual - cryptography can be discovered manually either by reviewing code or by interviewing
developers or suppliers. While this might look like the most lightweight approach, in practice this
is often very time consuming and can quickly become adversarial, as the inventory-taker tries to
obtain precision, while the application owner or vendor pushes back in order to return to other
priorities. One Cryptosense customer described the process of taking application cryptography
inventory by hand as “hand-to-hand combat”. Typically, results are disappointing in terms of
precision. Another Cryptosense customer found that some vendors, when asked to report on
algorithms used inside applications, in fact reported on the TLS ciphersuites that were available on
the network layer wrapping the application. Without a secondary control, it is hard to see where
these imprecisions are.

Static scanning - static scan tools take either source code, bytecode or binary as input. They are
typically used to check for bugs, vulnerabilities, or non-compliant coding, but can also be used to
check for cryptographic vulnerabilities. However, they tend to be much less effective at detecting
cryptographic errors than other kinds of vulnerabilities, such as buffer overflows.

To understand why, we need to understand the difference between these vulnerability types.
Buffer overflows are typically local issues: data is read, and then written to an area of memory, and
either there is some nearby range check on the size of the data, or there is not. Since the whole
pattern can be checked locally, precision is not affected by the logical over-approximation of the
control flow graph (i.e., the best guess at what will happen in the code at run-time that the static
tool must make, since it will not actually execute the code).

Cryptographic vulnerabilities often depend on the very precise choice of parameters that are
supplied in calls to cryptographic libraries, which may depend on non-local inputs such as
configuration files. Moreover, whether a call is secure or not may depend on other parts of the
code which are in completely different parts of the application. For example, whether this key has
already been used for a different operation, or whether this nonce value has already been used
with the same key. These issues are extremely hard, if not impossible to detect with static tools.
Hence if reduction of crypto risk is a main goal of the inventory, these tools are not suitable.

Some static tools also attempt to give details of all the cryptographic algorithms that are detected
in an application. However, they suffer from the same limitations since the execution path will
govern whether certain cryptography is actually used or not. For example, many applications
include a cryptography library that includes insecure algorithms such as MD5 or DES for legacy
reasons, but the application may never call them. Middleware components or web frameworks
used by the application may include the capability to call these algorithms, but only do so if
certain configuration options are set. The application may use a function like MD5 for a non-
cryptographic purpose such as creating an identifier on data controlled by the application, for

8 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

which attacks on MD5 are not relevant. Finally, if cryptographic libraries are loaded dynamically
and algorithm identifiers are created by reflection from strings in a run-time configuration file, the
static scanner may have no visibility on what is used. Hence, while knowing what algorithms are
inside an application can be useful as a very first step, it tends to produce inaccurate inventories
that risk not meeting business objectives.

Run-time tracing - run time tracing or IAST (Instrumented Application Security Testing)
tools work with the application at run-time, typically in a test environment but sometimes in
production, by “hooking” certain parts of the application to observe behaviour. The advantage of
this approach is that these tools have visibility on all cryptography that is used, including calls from
third-party libraries and framework components, without false positives, since only cryptographic
calls that actually happen will be traced. The only disadvantage is access requirements: the tools
only work on running applications, and those applications must be exercised to use all their
cryptography, either by unit or integration tests, interactively, or by tracing a production server.

At Cryptosense, we combine both IAST and static approaches. Cryptosense Analyzer is the
state-of-the-art IAST tool for cryptography, with coverage for Java JCE, .NET cryptography,
PKCS#11 and OpenSSL, giving not just inventory of algorithms, keys, key-lengths, libraries, modes
of operations, passwords, and parameters, but also full vulnerability analysis and customizable
cryptographic policy enforcement. Cryptosense Analyzer provides full usage information for all
the cryptographic keys the application employs, including details of key storage, operations, code
locations and data protected. Cryptosense Analyzer integrates in CI pipelines thanks to its REST
and GraphQL APIs and plugins for common build and CI tools such as Maven, Gradle and Jenkins,
making sure cryptography inventory is always up-to-date, and allowing the inventory update
workflow to become an automated, background task.

Cryptosense also offers a Static Crypto Scanner that detects cryptographic operations and
algorithms in bytecode. This can be used in combination with the IAST tool, in which case results
are processed together to give coverage information and detection of hardcoded keys.

For applications where, for whatever reason (non-sensitive data, imminent replacement, difficulty
in running tests, internal use only) a IAST cryptography inventory is considered inappropriate, the
static cryptography scanner can be used as a standalone tool for basic cryptography detection.

4.2. Infrastructure Cryptography

Modern IT infrastructure uses cryptography extensively, principally to encrypt data in transit
(protocols like TLS, IPSec) and data at rest (encrypted storage), and to enforce access control
(SSH keys, LDAP/PKI etc.). Endpoints in the network, whether they are devices, employee
terminals, application servers or specific appliances, will include some cryptographic capability
in order to interface with the rest of the infrastructure. The security of this cryptography is just
as important as the security of application cryptography, and so needs to be included in the
cryptography inventory.

4.2.1. Network Cryptography

Most network cryptography uses a small number of widely-used protocols.

9 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

TLS

TLS is a client-server protocol originally developed by Netscape in the mid 1990s and now an IETF
standard. It was originally designed to secure electronic commerce between web browsers and
servers on the Internet, but is widely used as a general purpose network encryption protocol.
It relies on a public key infrastructure (PKI) for authentication, which can be mutual when client
certificates are used.

There have been several versions of TLS, some of which are now considered insecure. Older
versions of TLS tended to have many configuration options that set the handshake and channel
encryption ciphersuite as well as a range of additional options, some combinations of which are
also considered insecure. Managing secure TLS configuration at scale is a challenge, and there
are several tools available to help with this, such as proprietary dynamic application scanning
tools (DAST) like Qualys and Tenable, which can give details of TLS cryptography as one of their
outputs, and open-source tools such as testssl.sh, which can be scripted at the command-
line. However, many organisations use these tools on a limited subset of their network, such as
external-facing TLS servers only, to save time and resources. For a full cryptography inventory,
internal TLS must also be scanned, which may require different tooling.

Cryptosense’s offering in this space is our Network Crypto Analyzer which can be tested
online at https://discovery.cryptosense.com. It includes a number of unique features which help
cryptography inventory to be more thorough and efficient: first, it interfaces with the certificate
transparency log to discover relevant registered domains that may have escaped attention
or been forgotten. Second, it suggests remediations for configuration issues for common
webservers. Third, at the users option, it can scan not just the given set of servers but also (when
they serve http webpages) their dependencies, i.e. the servers that provide the critical javascript
and other components that modern websites rely on. Additionally, as well as providing compliance
information with respect to a user’s policy, our Network Crypto Analyzer provides attack trees
that explain how combinations of vulnerabilities could be exploited to compromise encrypted
data, allowing appropriate prioritisation of fixes. Automated scans can be programmed, and
results exported and cross-referenced to applications in the Cryptosense Analyzer Platform.

SSH

The Secure Shell Protocol was initially designed to allow secure remote login access, but much
like TLS, it has now become a general network security protocol. Much like TLS, SSH servers
have a number of configuration options, some of which are now considered insecure, although
configuration complexity is somewhat lower than for TLS, in particular because enterprises
will typically control both the server and the client configuration, and not have to worry about
connecting to customers with legacy browser versions etc.

Tools for testing SSH configurations include open source tools such as SSHscan (for obtaining
a list of ciphersuites) and ssh-keyscan (for obtaining host keys). The security of SSH also
depends on the authorized keys that can be used to access servers, but these cannot in practice
be obtained by network scans. A filesystem scan is necessary (see below).

Cryptosense Network Cryptography Analyzer includes SSH ciphersuite and key coverage, and
checks that ciphersuite configuration meets policy. Network scans can be cross-referenced with
filesystem scans (see below).

https://discovery.cryptosense.com

10 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

IPsec

IPsec is frequently used to manage virtual private networks (VPNs). IPsec cipher configuration
can be complicated (see for example the list of ciphersuite options for the StrongSwan software
implementation of IPsec [5]). IPsec management often involves hardware appliances with
proprietary configuration mechanisms, and to add to the difficulty, different manufacturers refer
to the same ciphers by different names. There are open source tools for scanning IPsec over the
network, for example ike-scan, but these require some manual configuration to enumerate
acceptable ciphersuites. Additionally, VPN devices can be quite sensitive to failed connection
attempts, which are necessary to determine acceptable configurations. Full testing usually requires
examination of the config files.

Other Protocols

Some new protocols are starting to find their way into enterprises, such as the Wireguard VPN
protocol that can replace IPsec and is embedded in modern Linux Kernels, and domain-specific
network cryptography protocols for example for IoT. Where network scanning tools are not
available, these will have to be inventoried manually from their configuration files.

4.2.2. Cryptography Artifacts on the Filesystem

As we saw above, some aspects of infrastructure cryptography can’t be inventoried by
network scans alone. To complete the inventory, we will have to scan filesystems and retrieve
cryptographic artifacts.

Certificates

Public key certificates that manage PKI may be used for TLS or other application specific
protocols. They are typically stored on filesystems in standardised formats, or in platform specific
filestructures such as a Java keystore or the Windows certificate store. Each certificate contains a
variety of information pertinent to a cryptography inventory, such as the public key and signature
algorithm, the hash function used to produce a digest of the signature for verification in the
PKI, the validity dates, common name etc. When a private key is present, it is usually encrypted
by some password-based encryption method. The security of this encryption depends on the
password, the password based key derivation function parameters, and the cipher used, all of
which we may want to include in a complete cryptography inventory.

Certificates can be added to the inventory from filesystem scans, application scans, and network
scans. Cryptosense Analyzer Platform includes a filesystem scanner for cryptographic artifacts
including certificates, and allows these scans to be cross referenced to identify where the same
certificate has been seen and used. Some enterprises may already be using in-house or third-party
certificate management tools. Sometimes, these tools support export of their certificate list,
allowing it to be added to the inventory.

SSH keys

Since SSH keys have their origins in a proprietary format, and don’t form part of a PKI signature
hierarchy, they are typically somewhat separate from other standardised certificate keys.
However, an SSH infrastructure includes an implicit hierarchy, since an SSH server will typically
include a list of authorized keys which that server will permit to be used for a login. Depending

11 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

on inventory goals, this information might be pertinent to include in the inventory. It may already
be managed elsewhere by an in-house or third-party tool. Other information that can be picked
up from a filesystem scan includes the algorithm, keylength, and in the case of private keys,
the password-based encryption mechanism used to protect the private key value. Cryptosense
Analyzer Filesystem Scanner includes coverage for SSH keys.

4.2.3. HSM keys

Hardware Security Modules (HSMs) often contain an organisation’s most important keys in terms
of business value. These can include master keys like root signing keys for the PKI and domain-
specific keys for payment processing and other critical functions. These keys, and the HSMs
cryptographic capabilities, are therefore an important component of cryptographic inventory for
all business objectives.

For HSMs that support the PKCS#11 standard interface, Cryptosense Analyzer Platform has
extensive tool support for evaluating HSM security, scanning key information, and tracing use of
the HSM in order to identify which the algorithms and parameters used.

4.2.4. Other keys

There are typically other keys lurking on filesystems than these standardised ones. Some
applications store keys in their own proprietary ways, often insecurely. The only way to discover
these keys is to trace the applications and examine the key lifecycle information. In Cryptosense
Analyzer Platform, you can see all keys used by an application and filter out those which have
been loaded from standard keystores, leaving only those for which the storage requires further
investigation.

5. Planning an Inventory Project
We have surveyed the kind of information that might be appropriate for inclusion in a
cryptographic inventory, and the modalities for obtaining this information from applications,
networks, filesystems and hardware devices. The first step for an inventory project is to
decide what information is to be included to meet the business objectives for that particular
organisation. A typical experience of Cryptosense customers is that the inventory reveals far more
cryptography in use that was initially expected. Hence the the inventory project must be designed
to handle large volumes of information and make is accessible in ways that meet the business
objectives.

The inventory can then be broken down into packages of network, application, filesystem and
hardware scans, and appropriate procedures and tools selected for each. At Cryptosense we
have seen that inventory projects tend to succeed when they demonstrate value early to other
stakeholders in the organisation. Hence, starting with the most critical applications in the
organisation is frequently an effective strategy, before moving on to fill in the rest of the inventory
on less sensitive parts of the estate.

5.1. Five Questions to ask of Cryptography Inventory Tools

Cryptography inventory tooling needs to meet certain criteria to give the project a strong chance
of success.

12 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

1. Continuous visibility or one-time?

Good cryptography inventory tools will support automation not just for a one-time scan,
but also for continuous updates, so that the inventory is always up-to-date, and changes and
improvements can be tracked over time. For example, tools for application cryptography
inventory should integrate into the CI toolchain and report in to the central inventory.

2. Does the precision meet the business goals of the inventory?

An inventory of cryptography is not an end in itself. It must be accurate and precise enough to
meet the business goals of reduced risk, cryptography agility etc. Typically this requires the false
positive and negative rate to be very low, and the detail to include not just algorithms but also
details of modes of operation, padding, parameters etc., both in application and infrastructure
cryptography.

3. Is there support for open input and output of data?

Many organisations will already have some partial support for cryptography inventory, for example
from certificate managers, SSH managers, TLS scanners, endpoint management tools etc. A
good inventory tool will support input of inventory information from other tools. Additionally,
the organisation may already have a preferred way to consume this kind of data, for example in
Splunk or a similar visualization tool, or in ServiceNow-type inventory management tools. A good
inventory tool will export information in a manner suitable for these tools.

4. Is the final inventory queryable?

In order for the inventory to be useful, we will need to be able to query it to answer questions like
“where are we using SHA-1 outside of a random number generation context?” or “where do we
have certificates with a lifespan of more than 4 years?”. This requires a data model that supports
querying, not just a flat spreadsheet.

5. Can applications and infrastructure be cross-referenced?

The inventory as a whole must be queryable, not just individual scans. For example, it should be
possible to ask the tool to check whether a certificate found in a filesystem scan has also been
seen in a network scan or in use by an application, and if so where.

Cryptosense Analyzer Platform has been explicitly designed to meet these goals. Cryptosense is
pleased to advise and provide tools for all aspects of cryptography inventory projects. Contact us
at inventory@cryptosense.com.

6. References
[1] NIST Special Publication SP 800-57 - Key management recommendations https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf

[2] Gartner, Better Safe Than Sorry: Preparing for Crypto-Agility
Published: 30 March 2017 https://www.gartner.com/en/documents/3645384

[3] Cryptosense Webinar, The Impact of Crypto Failures, https://cryptosense.com/webinars/watch-
the-impact-of-cryptography-failures-webinar-part-1/

mailto:inventory%40cryptosense.com?subject=Crypto%20Inventory
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf
https://www.gartner.com/en/documents/3645384
https://cryptosense.com/webinars/watch-the-impact-of-cryptography-failures-webinar-part-1/
https://cryptosense.com/webinars/watch-the-impact-of-cryptography-failures-webinar-part-1/

13 Cryptosense | Cryptography Inventory Whitepaper
©

 C
ry

pt
os

en
se

 2
02

0

[4] Accenture, Cryptography in a Post-Quantum World https://www.accenture.com/_acnmedia/
pdf-87/accenture-809668-quantum-cryptography-whitepaper-v05.pdf

[5] Strong Swan IPSec IKEv2 Cipher Suites Configuration https://wiki.strongswan.org/projects/
strongswan/wiki/IKEv2CipherSuites

[6] "Why millions of Brits' mobile phones were knackered on Thursday: An expired Ericsson
software certificate" https://www.theregister.co.uk/2018/12/06/ericsson_o2_telefonica_uk_outage/

https://www.accenture.com/_acnmedia/pdf-87/accenture-809668-quantum-cryptography-whitepaper-v05.pdf
https://www.accenture.com/_acnmedia/pdf-87/accenture-809668-quantum-cryptography-whitepaper-v05.pdf
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites
https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites
https://www.theregister.co.uk/2018/12/06/ericsson_o2_telefonica_uk_outage/

	1.	What is a Cryptography Inventory
	2.	Why Maintain a Cryptography Inventory
	2.1.	Security and Resilience
	2.2.	Compliance
	2.3.	Crypto Agility
	2.4.	Cloud Migration

	3.	What should be in a Cryptography Inventory
	3.1.	Application Cryptography
	3.2.	Infrastructure Cryptography

	4.	How to make a Cryptography Inventory
	4.1.	Application Cryptography
	4.2.	Infrastructure Cryptography

	5.	Planning an Inventory Project
	5.1.	Five Questions to ask of Cryptography Inventory Tools

	6.	References

