
Moving from monoliths to microservices and from Virtual Machines to Kubernetes clusters

are two closely related migration paths. Using Kubernetes clusters enables the easy

deployment of microservices, and adopting microservices becomes a lot easier when

containers are used for the packaged delivery.

If you look at our features page, it is very easy to understand why Codefresh is the first

(and only) CI/CD platform for containers and Kuberentes. Currently, Codefresh is the only

solution that includes:

A system-wide Docker registry

A system-wide Helm repository

Custom Docker annotations

Dedicated Kubernetes dashboard

A Helm releases dashboard

A Helm deployments dashboard

A Helm environments dashboard.

All these features show clearly that Codefresh is the perfect solution for CI/CD if you have

already adopted containers and Kubernetes. However, they don’t tell the story of the

monolith-to-microservice adoption.

In this article, we will see how microservices change the way CI/CD pipelines are

organized and why Codefresh is specifically designed with microservices in mind.

Create your FREE Codefresh account and start making pipelines fast.

Create Account

HOME BLOG

Search the blog

C O N T I N U O U S D E P L O Y M E N T / D E L I V E R Y

CI/CD Pipelines for Microservices
8 min read

Kostis Kapelonis · May 13,
2019

https://codefresh.io
https://codefresh.io/kubernetes-deploy
https://codefresh.io/features/#Helm
https://codefresh.io/features/#DockerCI
https://codefresh.io/features/#DockerRegistry
https://codefresh.io/features/#DockerTestLab
https://docs.codefresh.io/
https://codefresh.io/enterprise
https://codefresh.io/pricing
https://codefresh.io/about
https://codefresh.io/careers
https://codefresh.io/blog
https://codefresh.io/request-a-demo
https://g.codefresh.io/login
https://codefresh.io/codefresh-signup
https://codefresh.io
https://codefresh.io/blog
https://codefresh.io/continuous-deployment/
https://codefresh.io/author/kostiscodefresh-io/
https://codefresh.io/features/
https://codefresh.io/docs/docs/docker-registries/metadata-annotations/
https://codefresh.io/helm-tutorial/kanban-promotion-boards/
https://codefresh.io/#facebook
https://codefresh.io/#twitter
https://codefresh.io/#linkedin
https://codefresh.io/#hacker_news
https://codefresh.io/#email
https://codefresh.io/#reddit
https://www.facebook.com/codefresh.io/
https://github.com/codefresh-io
https://www.linkedin.com/company/codefresh/
https://twitter.com/codefresh
https://www.youtube.com/channel/UC9r94SY6BqN05kXPIHsDXPg

Organizing pipelines for monolithic applications

In the past, pipelines for monolithic applications tended to share the same characteristics

of the application they were building. Each project had a single pipeline which was fairly

complex and different projects had completely different pipelines. Each pipeline was

almost always connected to a single GIT repository.

Pipelines for monolithic applications

The complexity of each pipeline was detrimental to easy maintenance. Pipelines were

typically controlled by a small team of gurus who are familiar with both the internals of the

application as well as the deployment environment.

For each software project, operators are taking care of the pipeline structure while the

developers are only working with the source code (going against the DevOps paradigm

where all teams should share responsibility for common infrastructure and collaborate on

shared problems).

Pipeline size and complexity is often a huge pain point. Even though several tools exist for

the continuous integration part of a monolithic application, continuous deployment is a

different matter completely which forced a lot of companies to create their own custom in-

house scripts for taking care of deployment.

As the number of applications evolved within an organization, the management of

pipelines became a bigger issue as well. In the end, most pipelines end as a spaghetti mix

https://codefresh.io/wp-content/uploads/2019/05/monolithic-pipelines.png

pipelines became a bigger issue as well. In the end, most pipelines end as a spaghetti mix

of python scripts, configuration management tools (e.g. puppet and chef) sprinkled with

some bash scripting all over the place.

This messy situation is very common within organizations that have not adopted

microservices yet and the only reason that it endures is that most developers are still

working on a single application so they never feel the pain of pipeline maintenance. That

job falls on the operators who are typically spending most of their time fixing pipelines (and

creating new ones for new projects) assuming that this is the status quo.

Scalability issues with microservice pipelines

Microservices have of course several advantages regarding deployment and

development, but they also come with their own challenges. Management of microservice

repositories and pipelines becomes much harder as the number of applications grows.

While a company might have to deal with 1-5 pipelines in the case of monolith applications

(assuming 1-5 projects), the number quickly jumps to 25 if each monolith is divided into 5

microservices.

These numbers are different per organization. It is perfectly normal for an application to

have 10 microservices. So at a big organization that has 50 applications, the operator

team is suddenly tasked with the management of 500+ pipelines.

https://codefresh.io/wp-content/uploads/2019/05/moving-to-microservices.png

Moving to microservices

This sudden explosion in numbers prohibits working manually with pipelines anymore.

Several CI solutions are not even prepared to work with such a high number of pipelines.

Here is where we reach the biggest pitfall regarding pipeline management in the era of

microservices. Several companies tried to solve the problem of microservice pipelines

using shared pipeline segments.

Shared pipelines are complex

In theory, this sounds like a good idea:

1. Operators are locating the common parts of pipelines with applications

2. A shared pipeline segment registry is created that holds all those common parts

3. Pipelines in existing projects are re-engineered to depend on the common segments

4. New projects must first examine the library of common pipeline segments and choose what is

already there

The final result is that a single pipeline is actually composed of two types of steps, those

common to other pipelines and those that are specific to that project only.

This has lead to the development of several solutions which attempt to centralized

common pipeline parts and re-use them in the form of “libraries” within software projects.

The issue here is that this approach requires a very large time investment as well as a

https://codefresh.io/wp-content/uploads/2019/05/shared-pipelines.png

disciplined team that can communicate and cooperates on the following factors:

1. Detecting which pipeline segments are indeed common,

2. Keeping the library of common pipeline segments up-to-date,

3. Disallowing copy-pasting of pipelines,

4. Development of brand new pipelines when needed,

5. Initial setup and pipeline bootstrap for each new project created.

Unfortunately, in practice, as the number of microservice applications grows, teams find it

very hard to keep all these principles in mind when creating new projects.

Reusing pipelines for Microservice applications

Codefresh is the first CI/CD solution for microservices and containers. Because we are not

burdened with any legacy decisions, we are free to define a new model for Codefresh

pipelines which is focused on microservices.

The basic idea is that all microservices of a single application have almost always the

same life- cycle. They are compiled, packaged and deployed in a similar manner. Once

this realization is in place we can see that instead of having multiple pipelines for each

microservice (where each one is tied to a GIT repository), we have instead a single

pipeline shared by all microservices.

Monolith split to microservices

The impact of this design cannot be understated. First of all, it should be clear that there is

no need for sharing pipeline segments anymore. The whole pipeline is essentially the re-

usable unit.

This makes pipeline construction very simple.

The biggest advantage, however, is the way new projects are created. When a new

https://codefresh.io/wp-content/uploads/2019/05/microservice-pipelines.png

microservice is added in an application, the pipeline is already there and only a new

trigger is added for that microservice. Notice that the pipeline is not connected to any

specific git repository anymore. All information for a repository is coming from the git

trigger that started this pipeline.

This is exactly what our recent feature launch was based on. As an operator you can

bootstrap a new project by quickly adding a new trigger on an existing pipeline:

Sharing a single CI/CD pipeline

This is the fastest way possible to bootstrap a new project. As the number of

microservices is growing, the only thing that is growing is the list of triggers. All pipelines

are exactly the same.

Creating a new pipeline is needed only if the whole deployment process is different for a

new project. This is an extreme scenario however, as with containers this will happen very

rarely. Once you package an application in a Docker image, the underlying

implementation is not really important anymore. Docker images from different

programming languages can be handled in the same manner.

Case study: Codefresh on Codefresh

Now that we have explained the theory behind microservice pipelines, we can look at a

solid example. And one of the natural examples is Codefresh itself. A very popular

question we get from our customers is how our own workflow is structured. It shouldn’t be

a big surprise that we also use Codefresh internally to manage Codefresh.

https://codefresh.io/codefresh-news/pipeline-next-gen/
https://codefresh.io/wp-content/uploads/2019/05/single-pipeline.png

Codefresh running on Codefresh

The Codefresh platform is itself a set of microservices that run on Kubernetes. We have

about 20 microservices, but they are easily managed by a handful of pipelines.

In fact, most of the heavy work is done by two pipelines:

A pipeline called “CI” which packages each microservice.

A pipeline called “CD” which deploys each microservice.

That’s it! Even if tomorrow our platform has 50, 500, or 5000 microservices the number of

pipelines will still be 2. Every new microservice will be handled by simply adding a new

trigger to those pipelines.

By the way, our pipelines are public, so feel free to adopt them for your own infrastructure

(or at least study them and get some ideas on possible workflows).

Let’s see them in order…

A CI pipeline for microservices

First, we have the Continuous Integration pipeline. This pipeline is connected with git

triggers to each of our microservices.

https://codefresh.io/wp-content/uploads/2019/05/codefresh-on-codefresh.png
https://github.com/codefresh-io/pipelines

CI pipeline for microservices

The pipeline steps do the following:

Check out the code for each service

Check the software version and whether this is a Pull request or not

Download extra dependencies for testing

Run linting (i.e. syntax checks) on the source code

Run unit tests

Run integration tests using Docker compositions

Generate test reports.

Build deployment docker images

Run security scans using Twistlock

Push images to the internal docker registry

Create Helm packages

The pipeline definition has several conditionals so not all steps are running at all builds.

Some of them are skipped depending on the nature of the commit.

The pipeline is connected via git triggers to all microservices, so whenever a commit

happens it runs automatically and prepares both a Docker image and Helm chart for each

release candidate.

The important point is that this pipeline does NOT refer to any specific git repository, nor it

is connected to one. It is a generic CI pipeline that is reused by all microservices

depending on the trigger that calls it.

This makes pipeline maintenance very easy, as there is only a single definition to

maintain. It also means that all best practices within a company (e.g. security scanning or

quality control) are automatically applied to all projects and teams without any extra effort.

https://codefresh.io/wp-content/uploads/2019/05/ci-pipeline-microservice.png
https://codefresh.io/docs/docs/codefresh-yaml/steps/composition-1/
https://codefresh.io/codefresh-news/test-reporting/
https://www.twistlock.com/
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/
https://codefresh.io/docs/docs/getting-started/helm-quick-start-guide/
https://codefresh.io/docs/docs/codefresh-yaml/conditional-execution-of-steps/

A CD pipeline for microservices

The next step is to run the Continuous Deployment pipeline for each microservice:

CD pipeline for microservices

This pipeline is launched automatically as part of a “promotion” which takes place when

the Codefresh team is making an official release for a microservice. It does the following:

Checks that no other deployments are happening in parallel for the same service

Waits for manual approval

Installs the previously prepared Helm package (created in CI pipeline)

Commits back to the git repo the dependencies list of the app

Creates a mark in New Relic for monitoring purposes

Sends a message to our Slack channel to show the status of the deployment

Again, if you read the pipeline definition you will see that it is not tied to any specific git

repository. Instead, it is reused for all microservices that need it.

The advantages of using CI/CD pipelines for microservices in this pattern should now be

clear to you. Instead of spending time with a mess of pipelines and a big number of

“reusable” pipeline segments or shared libraries, with Codefresh you can centralize all the

CI/CD logic in just two pipelines.

The icing on the cake is that if tomorrow we need to add a new microservice in the mix we

only need to add a new GIT trigger for it in the existing pipelines. It doesn’t get any easier

https://codefresh.io/wp-content/uploads/2019/05/cd-pipeline-microservice.png
https://github.com/codefresh-io/pipelines/blob/master/promote.yaml
https://codefresh.io/continuous-deployment/manual-approval/
https://codefresh.io/docs/docs/integrations/notifications/slack-integration/

than this!

Adding a new CI/CD pipeline for a microservice

Ready to try Codefresh and start creating your own CI/CD pipelines for microservices?

Create Your Free Account Today!]]>

About Kostis Kapelonis
Kostis is a software engineer/technical-writer dual class character. He lives and breathes automation,

good testing practices and stress-free deployments.

Enjoy this article? Don't forget to share.

Comments
* All fields are required. Your email address will not be published.

Comment...

https://codefresh.io/wp-content/uploads/2019/05/add-new-microservice.png
https://codefresh.io/codefresh-signup/?utm_source=Blog&utm_medium=Post&utm_campaign=cicdpipelinesmicro

Name

Email

Post Comment

Related Posts

C O N T I N U O U S D E P L O Y M E N T / D E L I V E R Y

Create Codefresh pipelines with new project grouping,
enhanced editor and ready-to-use templates

Kostis

Kapelonis

C O N T I N U O U S I N T E G R A T I O N

How to integrate your AWS CodeCommit repository to
Codefresh

https://codefresh.io/codefresh-news/pipeline-next-gen/
https://codefresh.io/continuous-deployment/
https://codefresh.io/codefresh-news/pipeline-next-gen/
https://codefresh.io/author/kostiscodefresh-io/
https://codefresh.io/continuous-integration/integrate-aws-codecommit-repository-codefresh/
https://codefresh.io/continuous-integration/
https://codefresh.io/continuous-integration/integrate-aws-codecommit-repository-codefresh/

Guy

Salton
CATEGORIES

Helm Tutorial

Deployment Verification Testing

Serverless

Continuous Deployment/Delivery

Docker Tutorial

Kubernetes Tutorial

Containers

Codefresh News

Continuous Integration

DevOps-Tutorial

Docker Registry

Webinars

Security-Testing

How Tos

Get a head start on building better pipelines!

Schedule a demo with a Codefresh expert today.

Request Demo

Product
Kubernetes Deployment

Pricing

Status

Docker CI

Continuous Delivery for Kubernetes

Helm Release Management

Resources
Codefresh Live Events

Codefresh Plugins

Documentation

Case Studies

Kubernetes Guides

Docker Guides

How-to Videos

Containers Academy

GitHub

https://codefresh.io/author/guy-saltoncodefresh-io/
https://codefresh.io/helm-tutorial/
https://codefresh.io/deployment-verification-testing/
https://codefresh.io/continuous-deployment/serverless/
https://codefresh.io/continuous-deployment/
https://codefresh.io/docker-tutorial/
https://codefresh.io/kubernetes-tutorial/
https://codefresh.io/containers/
https://codefresh.io/codefresh-news/
https://codefresh.io/continuous-integration/
https://codefresh.io/devops-tutorial/
https://codefresh.io/docker-registry/
https://codefresh.io/webinars/
https://codefresh.io/security-testing/
https://codefresh.io/howtos/
https://codefresh.io/request-a-demo
https://codefresh.io/kubernetes-deploy/
https://codefresh.io/pricing/
http://status.codefresh.io
https://codefresh.io/features/#DockerCI
https://codefresh.io/features/#KubernetsCD
https://codefresh.io/features/#Helm
https://codefresh.io/events/
https://codefresh.io/codefresh-plugins/
https://docs.codefresh.io
https://codefresh.io/case-studies/
https://codefresh.io/kubernetes-tutorial/
https://codefresh.io/docker-guides/
https://www.youtube.com/channel/UC9r94SY6BqN05kXPIHsDXPg
https://codefresh.io/container-academy/
https://github.com/codefresh-io

Company
About Codefresh

Contact Us

Careers

Blog

Get Stated

Create Account

Schedule Demo

Follow Us

© 2019 Codefresh. All rights reserved

Terms of Service

https://codefresh.io/about/
https://codefresh.io/contact-us/
https://codefresh.io/careers/
https://codefresh.io/blog/
https://codefresh.io/codefresh-signup
https://codefresh.io/request-a-demo
https://codefresh.io/docs/docs/terms-and-privacy-policy/terms-of-service

	CI/CD Pipelines for Microservices
	Organizing pipelines for monolithic applications
	Scalability issues with microservice pipelines
	Reusing pipelines for Microservice applications
	Case study: Codefresh on Codefresh
	A CI pipeline for microservices
	A CD pipeline for microservices
	About Kostis Kapelonis
	Enjoy this article? Don't forget to share.
	Comments
	Related Posts

	Create Codefresh pipelines with new project grouping, enhanced editor and ready-to-use templates
	How to integrate your AWS CodeCommit repository to Codefresh
	CATEGORIES

	Get a head start on building better pipelines!
	Product
	Resources
	Company
	Get Stated
	Follow Us

