

RETHINKING INTRUSION

SOFTWARE
Ideas for a more sustainable approach

Cristin Flynn Goodwin, Anne Marie Griffin, Thomas Peltier & John Walton

Abstract
The Wassenaar Arrangement’s first foray into export control of cybersecurity has created

unintended consequences and implementation challenges that the IT sector seeks to undo. The
Wassenaar Arrangement’s first foray into export control of cybersecurity has created unintended

consequences and implementation challenges that the IT sector seeks to address.

1

Contents
Rethinking “Intrusion Software” Control and Regulation... 2

Focusing on the Goal... 2

From the Perspective of Software Developers and Security Responders .. 3

Identifying the Technologies, Approaches and Products Impacted ... 4

Table of Potentially Impacted Products, Technologies or Approaches .. 5

Solving the Problem .. 9

Intrusion Delivery Platforms ... 9

Conclusion ... 11

© 2016 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

and views expressed in this document, including URL and other Internet Web site references, may

change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

2

Rethinking “Intrusion Software” Control and Regulation
In anticipation of additional technical discussions that Wassenaar Arrangement Participating States will

be having on the “intrusion software” control, we offer these thoughts publicly to government

policymakers engaged in those discussions and welcome engagement on this topic from the

cybersecurity community worldwide.

In this paper, we offer views on how to refocus the current intrusion software export control debate to a

more sustainable approach going forward. We then look at how the security community and software

developers are impacted by the control, and offer a table of examples of products that may fall in scope

of the intrusion software control. We then provide a narrower approach to controlling products aimed

at intrusion, and provide recommended language for Participating States to consider prior to the

September experts group meeting of Participating States.

We hope that with continued commitment from the Wassenaar participating states, we can evolve the

intrusion software control over time to a narrowly tailored and well understood control that can help

protect those involved in protecting the fight for human rights, and protecting our security online.

Focusing on the Goal
The ongoing Wassenaar discussions about the intrusion software and technology controls are a very

positive development. Wassenaar members should continue to discuss this control and work towards the

ultimate goal of either substitution of the control in its entirety, or a significant modification of the

definition of “intrusion software,” which may take several years to accomplish. At its core, the definition

of intrusion software remains the primary challenge of this control, and its substitution is essential to

creating a narrowly tailored and meaningful technology control.

As the Participating States contemplate changes to the current language in the “intrusion software”

control in advance of continued negotiations, those involved in the discussion should work towards three

goals:

1. A Publicly Articulated Problem. At present, the definition of “intrusion software” remains fatally

overbroad. The goal of Participating States should be to articulate the underlying problem they

are trying to solve publicly and ensure that a definition for a control meets that publicly articulated

problem.

2. A New Control to Address the Articulated Problem. Once articulated, the Participating States

should agree publicly to work with the security community to create a new control that is clearly

understood, narrowly scoped, and implementable in a meaningful way by Participating States.

3. A Commitment to Transparency on Cybersecurity. As has been made clear by the outcry over the

Intrusion Software control, the ability of the export control community to craft a cybersecurity

control is significantly hampered without sustained input and partnership from the security

community. This will require rethinking some of the classifications and security restrictions on

discussions in this space. Going forward, Participating States should commit to a public vetting of

cybersecurity controls prior to adoption to ensure accuracy, appropriate tailoring, and context.

3

Addressing these goals would eliminate the current challenges around the Intrusion Software control and

would enable a more stable and robust process to address future concerns, as it is inevitable that they will

arise. Implementing Participating States are either excepting out large swaths of industry in broad

domestic exceptions (some of which have been made public, but many of which have been decided in a

non-transparent manner to a handful of companies) or are not creating clear regimes to enforce its terms

and are thus seeing either little or no licensing activity in relation to the export of these products and

technologies. This lack of conformity begs the question as to whether the control fits the purpose for

which it was proposed. Given the pervasiveness of technology and the need to ensure security

practitioners have the flexibility and agility to respond quickly, we must rethink the current “intrusion

software” definition and control approach.

From the Perspective of Software Developers and Security Practitioners
As has been stated in comments on the Intrusion Software control, the challenge of the underlying

definition of “intrusion software” is that it incorporates the very essence of software development – taking

code that already exists for a purpose, and modifying it or integrating it in a way to make it do something

different or new that was not intended or permitted when it was created. While “intrusion software”

itself is not controlled, the definition is confusing and is central to the successful implementation of the

control.1

Ideas can sometimes start small. Security practitioners focused on defence (the “Blue Team” to the

attacker’s “Red Team”, in security parlance) may want to build some new attack tools to help defend

against new classes of attacks. He or she may go to well-known software development platforms, like

GitHub, and pull down some files that already provide obfuscation, or evasion, or modification techniques.

Simply because that Blue Team’er or Red Team’er is thinking about new ideas by pulling code and building

on it to test out a new idea for a defence or an attack tool that helps create a defence, that cobbling

together of (or in export control parlance, “specially designing”) a new software product based in part on

existing code would be subject to controls. That garage-level innovation, the “what if” inquisitiveness we

need to create the building blocks for tomorrow’s defences, is chilled by the prospect of an export control

review or licensing at each step of the “what if” process.

Large corporations are also sharing information internally, across teams and across borders. This type of

security collaboration also happens around the globe and around the clock. Any transfer of technology

internally of these types of technologies, that security teams may need to investigate an incident in a

rapidly evolving environment, would also be subject to license in some nations that have already adopted

the control.2 Bug bounties – a growing and common tool that large companies often use to solicit

sophisticated vulnerabilities – may also be subject to license.3

1 See, e.g., “Intrusion software tools and export control,” UK Department of Business, Innovation and Skills (BIS), available at

http://blogs.bis.gov.uk/exportcontrol/files/2015/08/Intrusion-Software-Tools-and-Export-Control1.pdf (including the definition

of “intrusion software” and providing examples of potential UK license obligations).

2 Id. at 9.

3 Id.

http://blogs.bis.gov.uk/exportcontrol/files/2015/08/Intrusion-Software-Tools-and-Export-Control1.pdf

4

Let’s be clear – this type of work happens constantly. Files are created and shared, and the security

community encourages re-use and “recycling” of code or techniques to defeat protective

countermeasures, modify the intended path of a file, or extract data. The security community’s use and

re-use of code and projects is intentional, and the same type of sharing occurs inside companies between

teams looking to innovate and leverage work already done – with a wide range of license terms, or perhaps

no license at all.

All of this organic sharing and exchange is a result of software engineers and innovators asking “what if?”.

If an export control review is required before that “what if?” conversation can continue, or if ideas are

shelved because of the lack of clarity around the export control review process, the cascading impacts on

security cannot be understated.

It may be tempting for a Participating State to say “that’s not what we mean, we were only targeting a

limited number of products.” It’s important to keep in mind that although these types of security

innovations (or creating or sharing Blue Team, Red Team or “bad guy” tools) may not have been intended

to be captured, they unambiguously meet the current definition and control groups. Many (if not most)

small innovators and security researchers may not have the resources to seek export counsel, and are

either under-reporting their obligations, unaware of those obligations, or waiting to see how governments

enforce those obligations. Fixing the definition of “intrusion software” and narrowing the scope of the

control will help remove that uncertainty and provided a more sustainable approach going forward.

Identifying the Technologies, Approaches and Products Impacted
Microsoft strongly encourages the Wassenaar Participating States to reconsider the underlying definition

of “intrusion software.” If the current ambiguous term is left unchanged, governments seeking to impose

the Intrusion Software control will need to ensure that appropriate groupings of activities or approaches,

and their relevant technologies or products, are adequately excluded from any implementation. This will

be a challenge, given that software engineering generally requires modification of a system, or the

modification of a standard execution path of a program or process allowing for external instructions, in

order to create new software. Re-use of code, either internally developed or in the open source space,

will fall into the definition of controlled code, because monitoring tools or protective countermeasures are

often broken in order to create new functionalities or to enable new innovations.

As we begin to identify tools and techniques that may be impacted by the control, it’s important to keep

in mind the context of how security researchers and responders work. Discovering, investigating,

recovering and understanding common intrusions, or software used by intruders, requires security

practioners to gather data and examine evidence of both malicious activity, malicious software as well

as common software used by defenders and adversaries alike. A number of open source, proprietary

and commercial tools exist for security and software developers, or open source (or even internal) code

projects are assembled to help address an unmet need. Intrusion platform and defender software often

share the same or similar techniques or capabilities but with opposing intentions – the defenders seeks

to detect and respond to indicator(s) of an adversaries access, presence or malicious intent while the

adversary seeks to hide, masquerade or disrupt evidence of their tools and activity.

The table below is designed to articulate multiple types and classes of work currently caught by the

Intrusion Software control, which we have modified from a version provided in Microsoft’s Comments to

5

the US Department of Commerce Bureau of Import Security in 2015 to provide (1) examples of products

or technologies that potentially fall under the control; and (2) additional activities that may remain

impacted. Only governments can make a determination as to what is covered, or what a government may

choose to exempt in an advisory opinion. It is important to keep in mind that new categories or techniques

may emerge as cloud computing, virtualization and Internet of Things (IOT) continue to advance. Attacks

against hypervisors may not use the same processes as those focusing on broader Operating System

exploits. Tools or techniques used to enable an intrusion against an endpoint – for example, a home user’s

PC, may be different from those used to attack a hypervisor running a particular aspect of a cloud service,

but containing no end user information.

Following the table, we provide further examples of products and capabilities impacted by the Intrusion

Software control. We note that the examples listed are simply that, and are not intended to describe or

endorse a particular product or imply its use inside Microsoft, except where we list a Microsoft tool,

product or service.

Table of Potentially Impacted Products, Technologies or Approaches

Area Description Used For Software Examples

Penetration

Testing

Software created or used to

evaluate and improve the

security of services and

software that many companies

develop and operate. Includes

proprietary software and open-

source software that many

companies specially design or

modify for particular purposes.

It may also involve controlled

tools used for offense (i.e.

Ethical Hacking). Can also

simulate attacks to test internal

detection and response

capabilities.

Used to monitor internal

systems, look for

vulnerabilities, ensure

compliance with security

policies, and help protect

systems. Companies also

reverse engineer tools used

by bad actors in order to

protect customers. Also

includes “Red team” toolsets

for establishing and

maintaining access (aka

backdoor, process execution,

Command and Control, data

exfiltration, etc.).

Nmap, Burp Suite,

Rapid7’s Metasploit

Pro, Immunity’s

Canvas, Core Impact,

SysInternals, other

internal / external

tools4

Malware Research Malware, exploit code, and

reported vulnerabilities,

including malware that meets

Microsoft performs extensive

analysis on malware,

including reverse engineering

the code to identify how it

was put together. Microsoft

Treasurehunt,

Maltego, UltraEdit,

OllyDbg, IDA Pro ADV,

HexRays, Far, .NET

Reflector, 010 Hex

4 See, e.g., “Penetration Testing Tools Cheat Sheet” for a list of penetration testing areas or scenarios that are relevant to the

intrusion software space. https://highon.coffee/blog/penetration-testing-tools-cheat-sheet/

https://highon.coffee/blog/penetration-testing-tools-cheat-sheet/

6

the definition of intrusion

software.

also creates new code,

including new intrusion

software, to illustrate the risks

of the particular malware or

malware family. Can include

sandbox or “detonation”

technologies that are

designed to watch program

behavior to ascertain whether

a running program is

malware.

Editor, other internal

/ external tools

Vulnerability

Scanning

Similar to penetration testing,

private sector entities use both

proprietary tools and open

source tools that are specially

designed or modified in

response to specific intrusion

software-related attacks.

Mitigating impacts of

vulnerabilities, identifying

new vulnerabilities, and

enabling software engineers

to reproduce and test

software patches, updates,

and upgrades.

Nessus, Qualys,

Nexpose,

WebInspect, other

internal / external

tools

Incident Response,

Network Security,

Host Intrusion

Prevention

Systems (HIPS),

and Forensic

Analysis Tools

Products or technologies used

to help triage or respond to an

incident, or help identify and

remediate an attacker. This is a

wide range of products,

services and approaches that

enable security responders to

do their jobs.

Remote collection, network

mapping, packet sniffers, log

analysis, scanning, host

intrusion prevention,

forensics, etc.

Encase Suite, Access

Data, XWays, F-

Response, Slueth Kit,

WireShark, Maltego,

EMET, Sysinternals,

other internal /

external tools

Sandboxing5 Sandbox or “detonation”

technologies designed to watch

program behaviour to ascertain

whether a running program is

malware.

Because malware attempts to

detect whether it is running in

sandboxes, this common

approach applies deception

practices to lie to the malware

about the environment it’s

in—almost rootkit like

behavior to convince malware

that our monitoring software

isn’t present. The intent is to

avoid detection or monitoring

by potential malware, not by

Office365 Advanced

Threat Protection;

Defender Advanced

Threat Protection,

internal / external

tools

5 For more information on sandboxing, please see: https://msdn.microsoft.com/en-us/library/hh673561(v=vs.85).aspx.

https://msdn.microsoft.com/en-us/library/hh673561(v=vs.85).aspx

7

our protective network

defences.

Security

Engineering Tools

This is a broader class of tools

used in security, including

debuggers, file fuzzers, and

other automation used to

support security.

Identifying vulnerabilities,

modifying software to

enhance operability or

decreasing security risks,

software development tools

used to create elements of

various tools into an

integrated and new product.

Debugging tools for

WinDbg, KD, CBD,

NTSD, OllyDbg,

Immunity Debugger,

SDL MiniFuzz,

Codenomicon, Peach

Fuzzer, etc., this is a

wide space with

many different types

of tools.

Application

Compatibility,

Interoperability

and Work-Arounds

Many companies develop or

deploy "shims" which are

technology "work-arounds" to

aid in the compatibility of

software programs with an

operating system.

Shims or work-arounds

modify the intended function

or path of a file in order to

enable compatibility with

other devices or

interoperability with other

software. Helpful when an old

application needs to work

with a new operating system

or back-end system, for

example.

Application

Compatibility Toolkit,

Compatibility mode

capabilities, Detours,

shims as

compatibility

mitigation6

Information

Sharing

Receiving and sharing threat

reports, vulnerability issues,

and other security related

issues on products and services

and third party products and

services in the computing

ecosystem. Collaborating on

planned and ad hoc issues that

arise on security.

Incident response, mitigating

vulnerabilities, investigating

new issues, sharing

information to help raise

security awareness amongst

others, and generally

protecting the computing

ecosystem.

Often on a case-by-

case basis, includes

proof of concept

(POC) code or exploit

code, and maybe a

tool that proves the

POC. Critical to

incident response,

can also include

technical mitigation

techniques.

66 https://technet.microsoft.com/en-us/library/dd837645(v=ws.10).aspx

https://technet.microsoft.com/en-us/library/dd837645(v=ws.10).aspx

8

Supporting

Customers

Security Consulting Services

provides technical and other

services on-site with customers

around the world leveraging a

wide range of internal and

external tools and technologies.

This involves they use of

controlled forensics tools.

Used to investigate breach

responses, conduct

penetration tests, review

software and security issues,

and create recommendations

on improving security.

Encase Suite, Access

Data, XWays, F-

Response, WireShark,

Maltego, Core

Impact, Burpsuite,

PSExec, internal tools

and other many

other solutions (see

Penetration testing,

Security Engineering,

and IR tools)

Engaging the

Security

Community

Working directly with security

researchers, third-party

companies, hosting

competitions, participating in

conferences, and engaging on

difficult security issues to

improve product and services

security.

Includes sharing information,

technology, tools, ideas, and

collaboration; can include

hosting "bug bashes" or

awarding prizes,7 paying for

"bug bounties," publishing

research,8 attending

conferences, and creating

new tools, technologies, and

tactics to improve security.

Pwn2Own

competition,

technical conferences

and information

exchanges, etc.

Automated

Exports and Re-

Exports or

Unintentional Re-

Exports

Automation is the future state

of security and is continuing to

change the security landscape.

Machine to machine

information sharing allows

automation and machine

learning to make adjustments

without human interaction,

although the information can

move between company and

non-company servers.

Companies are engaging in a

growing use of automated

software programs and

custom developed tools,

which can include software

that automatically exports

and reexports items; the draft

does not contemplate

machine to machine exports

and re-exports.

If a government requires

under its laws incident

reporting of some kind, and

that information is shared

Incident reporting

obligations under the

EU NIS Directive are

still being formed but

could be relevant in

this space. Machine

to machine export

can also trigger this

issue.

7 See, e.g., Microsoft's Blue Hat Prize: http://www.microsoft.com/securitv/bluehatprize/.

8 "UK Student's Research a Wassenaar Casualty," Michael Mimoso, threatpost.com, July 6, 2015, available at:

https://threatpost.com/uk-students-research-a-wassenaar-casualty/113625/ (highlighting a restricted portion of the student's

dissertation on expanding bypasses for Microsoft's Enhanced Mitigation Experience Toolkit).

http://www.microsoft.com/security/bluehatprize/
https://threatpost.com/uk-students-research-a-wassenaar-casualty/113625/
https://threatpost.com/uk-students-research-a-wassenaar-casualty/113625/

9

with another government, a

re-export could occur.

Many of the tools and techniques listed above cross multiple categories, while others do not fit neatly

into one particular area but could, if modified or used in a particular way (as they often are), be swept in

under the definition of “intrusion software”. Thus while the original purpose may not meet the

intrusion software definition of “specifically created” when combined together the question of intent

becomes less clear, and the likelihood of use in scenarios for which the Participating States would seek

control could be present. Examples of these types of software (and other tooling security or defensive

areas) are easily found on common code sharing platforms, such as GitHub or sectools.org.

Solving the Problem
The definition of “intrusion software” remains overbroad, and any implementation will either result in

massive exceptions or confusing and not-well-understood regimes. As noted above, that stems in large

part from the foundation – the definition of intrusion software as currently written is fatally flawed. If

we are focused on the issue of protecting human rights workers and civil advocates from software that

allows a third party to conduct surveillance, extract information, or install or change software for the

purpose of enabling those types of behaviors, starting with a more accurate definition is critical to

success.

Intrusion Delivery Platforms
When an attacker targets an individual, the attacker needs to find a way to get a foothold into the

victim’s technology. That can be done via a number of ways, but the point isn’t that the intrusion is

done via software (of course it is!) – the point is that the target is identified, there is intent to commit an

attack against an un-consenting victim, the intrusion is delivered, and it is delivered by a tool or platform

that enables the intrusion to be successful.

Microsoft believes that by scoping the issue to address the problem that has been articulated publicly –

attacks against human rights workers and defenders of civil society – to identify the most common

attributes of the means of attack is a smarter approach to regulation and licensing of those

technologies. Microsoft has introduced the idea of requiring licenses for “intrusion delivery platforms”

which we define as software that meets each of the following three criteria:

1. Exploits a process to obtain access to a system

a. Includes exploits for vulnerabilities for which a patch, update or mitigation is not widely

available in the public domain; or

b. Includes executables to obtain access to a system; or

c. Includes software that exploits vulnerabilities in any cryptographic algorithm or

intentionally weakens the cryptographic implementation on the target device or system;

and

10

2. Exhibits evasion capabilities

a. Includes anti-disassembly technical mechanisms to prevent reverse engineering or to

avoid protective countermeasures; and

3. Enables subversion or destruction

a. Is capable of enabling or re-enabling access on a target device or system without

authorization; or

b. Includes software which irretrievably destroys the functionality of the device or system

without consent of the owner of the device or system.

In order to be specific about the use cases and applicability of Intrusion Delivery Platforms, it is

necessary to detail certain exceptions which would not require a license. Many of the items listed below

are common technologies or security tools that enable engineers, consultants and responders to

continue their work unabated. The following could be workable standard exceptions to any licensing

obligation for Intrusion Delivery Platforms:

 Non-commercial use or sales of Intrusion Delivery Platforms under $1m USD

 Hypervisors, debuggers or Software Reverse Engineering (SRE) tools;

 Sweep patch validation or assessment tools;

 Digital Rights Management (DRM) ‘‘software’’;

 Software or code designed to be installed by manufacturers, administrators or users, for the

purposes of asset tracking, incident response, and recovery;

 Capabilities developed for and/or used, operated, or installed for the purposes of:

o Adding to or modifying the security or functionality of systems, equipment,

components, software, or technology;

o Adding to, testing, or modifying security or functionality of any hardware, software or

technology where informed consent with knowledge has been given;

o Securing data, systems, and networks;

o Creating reports and analyses for customers for the purpose of remediating security

issues

 Network-capable devices including mobile devices and smart meters.

The non-commercial use or sales under a particular dollar amount is an important exception. Given the

large number of security researchers building tools from GitHub, SourceForge, and other project

repositories, a non-commercial exception ensures that researchers and initial ideas can be shared and

shaped unabated. While the $1 million USD exception limit can be subject to debate, the point in

setting the bar at that level is to help parse out the delta between smaller purchases and large

government deals for the purpose of buying intrusion delivery platforms used against large numbers of

human rights or civil society advocates. Government experts in criminal law and organized crime should

be consulted on the appropriate level of transaction costs that tip from the hobbyist, researcher, or

legitimate user to a broader use of intrusions delivered by a platform enabled for causing harm.

11

In support of the above language, we also propose the following definitions, for context and discussion

purposes:

 ‘Offensive intrusion’ is the capability of compromising or circumventing security features, and

obtaining access to systems, equipment, component or software without consent.

 ‘Monitoring tools’ are ‘‘software’’ or hardware devices, that monitor system behaviors or

processes running on a device. This includes antivirus (AV) products, end point security

products, Personal Security Products (PSP), Intrusion Detection Systems (IDS), Intrusion

Prevention Systems (IPS) or firewalls.

 ‘Protective countermeasures’ are the techniques designed to ensure the safe execution of code,

including but not limited to Data Execution Prevention (DEP), Address Space Layout

Randomization (ASLR), or sandboxing.

Conclusion
In order to create clear use cases and exceptions that can be understood and implemented by the

security community worldwide, Microsoft recommends that the Participating States revisit the scope of

the original control and the definition of “intrusion software.” Given the interconnectedness of

technologies and license obligations that can be created when software engineers and security experts

are experimenting, building, and defending, an exception-based list of software and technology will

quickly become unmanageable and outdated. As the Internet of Things and machine learning continue

to advance our ability to innovate, our first foray into cybersecurity licensing should be discrete and

specific. The Wassenaar Participating States have the opportunity to remedy the intrusion software

situation and start anew, consistent with the three goals we outline above. We remain ready to engage

in that dialogue.

12

Appendix – Language for Use in Negotiation

Substitute Definition for Intrusion Software – Intrusion Delivery Platforms

An intrusion delivery platform is defined as software that meets the following three criteria:

1. Exploits a process to obtain access to a system

a. Includes exploits for vulnerabilities for which a patch, update or mitigation is not widely

available in the public domain; or

b. Includes executables to obtain access to a system; or

c. Includes software that exploits vulnerabilities in any cryptographic algorithm or

intentionally weakens the cryptographic implementation on the target device or system;

and

2. Exhibits evasion capabilities

b. Includes anti-disassembly technical mechanisms to prevent reverse engineering or to

avoid protective countermeasures; and

3. Enables subversion or destruction

c. Is capable of enabling or re-enabling access on a target device or system without

authorization; or

d. Includes software which irretrievably destroys the functionality of the device or system

without consent of the owner of the device or system.

Exceptions
 Non-commercial use or sales of Intrusion Delivery Platforms under $1m USD

 Hypervisors, debuggers or Software Reverse Engineering (SRE) tools;

 Sweep patch validation or assessment tools;

 Digital Rights Management (DRM) ‘‘software’’;

 Software or code designed to be installed by manufacturers, administrators or users, for the

purposes of asset tracking, incident response, and recovery;

 Capabilities developed for and/or used, operated, or installed for the purposes of:

o Adding to or modifying the security or functionality of systems, equipment,

components, software, or technology;

o Adding to, testing, or modifying security or functionality of any hardware, software or

technology where informed consent with knowledge has been given;

13

o Securing data, systems, and networks;

o Creating reports and analyses for customers for the purpose of remediating security

issues

 Network-capable devices including mobile devices and smart meters.

Definitions
 ‘Offensive intrusion’ is the capability of compromising or circumventing security features, and

obtaining access to systems, equipment, component or software without consent.

 ‘Monitoring tools’ are ‘‘software’’ or hardware devices, that monitor system behaviors or

processes running on a device. This includes antivirus (AV) products, end point security

products, Personal Security Products (PSP), Intrusion Detection Systems (IDS), Intrusion

Prevention Systems (IPS) or firewalls.

 ‘Protective countermeasures’ are the techniques designed to ensure the safe execution of code,

including but not limited to Data Execution Prevention (DEP), Address Space Layout

Randomization (ASLR), or sandboxing.

