,/ADASTRA

Mine of the Future

Adastra Approach

The New Normal in Mining

Horizons Of Mine Of The Future

Tactical

Strategic

- Aggregate data from equipment across your Mining sites to enable a holistic view of key performance indicators
- / Drill into your data to compare the performance of equivalent machines at multiple sites
- / Gain insight into the factors that contribute to variations in performance

- Move from break/fix to predictive maintenance
- Enable new forms of quality assurance
- Use data to make the business case for large investments
- Employ advanced technology to transform business
- / Real-time demand prediction and planning
- / Integrated business planning with cognitive decisions
- / Optimize logistics to meet rapidly changing demand
- / Manage inventory stored and time in warehousing
- / Increase global effectiveness and productivity
- Instantaneous supply chain orchestration and collaboration

Adastra Solutions

Operational Visibility

Horizon 1: Enterprise Analytics For Self-Service BI

Sustainability Benefit: Thru KPI's, track and improve mining yields, reducing environmental impact for the same output

PROBLEM

Existing 300+ mining customers required a locally installed and managed reporting / analytic solution. Local deployment caused significant overhead, higher support costs, slow new capability integration, and limited capabilities for customers.

SOLUTION

Created a centralized analytics platform, collecting real time telemetry data from 300+ mines, to support both live (warm) and historical (cold) path analytics. Introduced new advanced analytic capabilities to customers, and provided a better user experience.

RESULTS

Customer productivity increased by leveraging analytic data, enabling proactive maintenance and more efficient equipment use. New analytic services became a differentiator for the miner. ,/A

Enterprise Search

Horizon 1: Quick and Efficient Enterprise Search

Sustainability Benefit: Enable quick, self service, global, electronic access to relevant content, avoiding travel and use of paper

PROBLEM

With limited visibility into existing millions of EDI transactions and documents, searching and reporting on relevant data is difficult and time consuming.

SOLUTION

EDI Data Lake, search and reporting solution with an Azure Framework to populate with EDI transactions and documents in common business formats. Establish EDI processing via Cognitive Search, Synapse Provisioned SQL Pool and Azure Data Lake Index and connect the documents to enable search.

RESULTS

Improve productivity by providing a real-time searchable database with powerful Power BI reporting and alerting processes. Avaialble applications that can compare current and historic purchase orders to compare changes. Find relevant content in minutes rather than days. ,/A

Text Translation

Horizon 1: Text Translation of Global Documents

Sustainability Benefit: Enable quick, self service, global, electronic access to translated content, avoiding travel and use of paper

PROBLEM

Global mining organizations will keep information in different languages, worldwide, making identifying and collating information a strenuous task.

SOLUTION

Leveraging Azure Cognitive Services "Computer Vision" and "Language Translation", through Adastra's real time / API solutions, documents are automatically translated from 175 different languages to the required target language, enabling global access to critical content.

RESULTS

Improved organizational knowledge sharing and decision making, by removing language barriers as a blocker. Make better mining business decisions by leveraging global knowledge.

,/A

Cognitive Vision - Processing

a - 12		SM25DB67 Lot				Lot: 1	: 17091901				Start: Sep 19 2017 8:18AM					Runtin			Runtir	ne= 14.3 min		InActive	
Average	of FLO	w	Average of RPM				Average of TEMP				Average of PSI					Average of LPSI			1	Transformed			
		-				22 10:5			and The	10.00			0.										
Tanget: 21	32 (402	2		orget.	ocriss (9	ssalley		, NUT	URL EZ.II	24(4)(12)2	4		.13	iger 0.00	2		<u>.</u>	rm Dstr.	0.000	_			
KPIs		FLOV	v			RPM				TEMF	,			PSI				LPS					
Chemicals	Target	Actual	WR	RR	Target	Actual	WR	RR	Target	Actual	WR	RR	Target	Actual	WR	RR	Target	Actual	WR	RR			
2		4.45			968.00	830.00			0.00	0.00			121.00	0.00			0.00	0.00					
8	110.17	57.59			1.020.00	535.00			66.40	66.50			113.40	0.00			0.00	0.00					N.T.
13	3.16	3.12			517.00	517.00			0.00	0.00			20.00	-0.00			0.00						
													28.00	0.00							Reference		
													28.00					100			Reference		
KPIs Other/	Tarost	FLOV	y WR	89	Tarnat	RPM	Wa	00-	Toront	TEMP		-	Taroat	PSI	wp	DB	Ternel	LPS	WD	00	Reference		
KPts Other/ Mechanical	Target	FLOV Actual	v WR	RR	Target	RPM Actual	WR	RR	Target	TEMF Actual	WR	RR	Target	PSI Actual	wR	RR	Target	LPS Actual	WR	RR	Reference		
KPIs Other/ Mechanical	Target	FLOV Actual	v WR	RR	Target	RPM Actual	WR	RR	Target	TEMF Actual	WR	RR	Target	PSI Actual	WR	RR	Target 275.93	LPS	WR	RR	Reference	run_id	note
KPIs Other/ Mechanical 78 79 90	Target 0.17 0.00	FLOV Actual	v wr	RR	Target 5.000.00	RPM Actual	WR	RR	Target 902.00 10.40	TEMF	WR	FIR	Target 0.00 10.20	PSI Actual	WR	RR	Target 275.93 10.20	LPS	WR	RR	Reference	rur_1d 19918	nos
KPts Other/ Mechanical	Target 0.17 0.00 0.00 3.00	FLOV Actual	v WR	RR	Target 5.000.00 0.00 1000	RPM Actual	WR	RR	Target 902.00 10.40 0.00	TEMF	WR	RR	Target 8.00 10.20 0.00	PSI Actual	WR	RR	Target 275.93 10.20	LPSI	WR	RR	Reference	run_1d 19918	note LOOI in injecar instead of orifice.
KPIs Other/ Mechanical 78 79 90 91 91 92	Target 0.17 0.00 0.00 3.00 25.00	FLOV Actual	v WR	RR	Target 5.000.00 0.00 10.00 34.00	RPM Actual	WR	RR	Target 902.00 19.40 0.00 0.00	TEMF	WR	RR	Target 0.00 10.20 0.00	PSI Actual	wR	RR	Target 275.93 10.20	LPSI	wR	RR	Reference	run_id 19918 59724	note LOOI in injector instead onfice.
KPIs Other/ Mechanical 78 79 80 81 82 83	Target 0.17 0.00 0.00 3.00 25.00 0.20	FLOV Actual	v WR	RR	Target 5.000.00 0.00 10.00 34.00 0.00	RPM Actual	WR	RR	Target 902.00 10.40 0.00 0.00	TEMF	WR	RR	Target 0.00 10.20 0.00	PSI Actual	WR	RR	Target 275.93 10.20	LPS	WR	RR	Reference	run_id 19918 59724 39186	note LOOI in injector instead confice.
KPIs Other/ Mether/ 78 79 80 81 82 83 84	Target 0.17 0.00 0.00 3.00 25.00 0.20 0.20	FLOV Actual	v WR	RR	Target 5.000.00 0.00 10.00 34.00 0.000 0.000	RPM Actual	WR	RR	Target 902.00 19.40 0.00 0.00 0.00	TEMF	WR	RR	Target 0.00 10.20 0.00 0.00	PSI Actual	wR	RR	Target 275.93 10.20 0.00	LPSI	WR	RR	Reference	run_id 19918 59724 39186 158160	note LOOI in Injector Instead ontice. LOOI at high pressure High pressure High of

Horizon 2: Anomaly Detection During Material Processing

Sustainability Benefit: During processing, detect anomalies and stop failing production, avoiding waste and scrap

PROBLEM

Miners lack visibility into the production quality of their supply chain, leading to significant scrap if not identified and prevented (e.g. during metail coil production)

RESULTS

Use AI to monitor streamed images, to identify anomalies in the mining process, stopping production and preventing wasted scrap. Provide visibility to the process via a Power BI dashboard, monitored by the line manager.

OUTCOME

Significant cost reduction in scrap, as intervention can be taken directly during the manufacturing process.

Cognitive Vision - Safety

Horizon 2: Anomaly Detection of Safety Procedures

Sustainability Benefit: Maintain mine efficiency thru safe working environments

PROBLEM

Without proper use of Personal Protective Equipment (PPE) such as high visibility safety apparel, there is an increased risk of injury to workers operating in different mining environments

SOLUTION

Implement a computer visionbased detection model which leverages advanced image processing and object detection techniques to identify safety vests in mining site video streams, coupled with edge detection methods to flag vests which are not properly secured. Enable a notification system which notifies site managers when there is a safety risk.

RESULTS

Reduced safety risk to mining employees through enhanced monitoring of safety vest adherence, leveraging video analytics and computer vision capabilities.

Drill and Blast Optimization

Horizon 2: Production Optimization

Sustainability Benefit: Optimize yields thru more efficient use of existing equipment and material

PROBLEM

Mines are increasingly focused on driving efficiency and productivities at their drill and blast sites but lack the datadriven insights to make optimal pattern design decisions.

SOLUTION

Implement a decision making web application tool that leverages a variety of parameters, including historical data, burden spacing, shovel efficiency, blast KPI's, etc., providing analytics and recommendations

RESULTS

Mines are empowered to reach optimal yields / rock fragmentation, and reduce blast costs, with data-driven insights. Provided visualization for hole patterns, KPI reports, blast predictions, recommendations on drilling intensities, and post blast analysis.

Knowledge Mining

Horizon 3: Use AI Driven Knowledge Mining to Expand Insights

Sustainability Benefit: Enable quick, self service, global, electronic access to translated content, avoiding travel and use of paper

PROBLEM

Miners have limited visibility into their backoffice documents, making locating information intensive and time consuming.

RESULTS

Build a series of AI-power intelligence modules that can be surfaced through a REST API for inference and incorporation into downstream processes

OUTCOME

Accelerated time to find relevant information that supports the generation of their safety standard documents as well as to automate their templates

Production Operations

Horizon 3: Predictive Maintenance for Improved Machine Availability

Sustainability Benefit: Through effective maintenance, improve machine lifespan and avoid machine replacement

PROBLEM

Unexpected disruptions, caused by machine failure can have major cost implications in the production and can impact an organization's ability to meet targets.

SOLUTION

Use of text classification and machine learning methods to analyze historical data and recommend the best solution. Implementation of an intelligent assistant for mobile devices that suggests recommended steps to solve the problem.

OUTCOME

Improved incident response time by >20% and downtime minimization, **saving >\$5M per year in averted expenses**.

Supply Chain Optimization

Horizon 3: Asset tracking and route optimization for elevated performance

Sustainability Benefit: Achieve more efficient outputs from existing machinery, reducing total machine count

PROBLEM

Vehicles are not being used at the fullest extent at manufacturing and mine sites, due to lack of visibility of truck operator.

SOLUTION

Collect IoT data in real time, from trucks, to track how they are performing on routes/ load delivery, modern data warehouse in Azure. Compare truck operator performance against other truck operators, to determine where additional training can help improve poorly performing operators.

RESULTS

Improved truck operator performance at sites by 5%, optimizing truck assets more effectively and reducing overall truck costs, **realizing** >**\$8M / year in value from existing assets**.

Getting Started

Roadmap To The Intelligent Mine

HORIZON ONE: CLOUD FOUNDATION

HORIZON TWO: PREDICTIVE OPERATIONS

HORIZON THREE: PRESCRIPTIVE MINING

About Adastra

Adastra Microsoft Partnership

Adastra: Go-To Partner for Data & Al

Microsoft IMPACT Award Recipient:

- 2021 Analytics Impact Award
- 2021 AI Impact Award
- 2021 Data Platform Modernization Award
- 2020 / 2019 Commercial Partner of the Year
- 2019 Manufacturing Innovation Impact Award

Azure Migration Partner

Advanced Specialization for Analytics

Advanced Specialization for Windows / SQL Server Migration to Azure

Lead Canadian Partner for Synapse Migration / Implementation

Product Team Collaboration for Azure Synapse / Azure Purview / Azure Databricks

Microsoft

Gold Data Analytics Gold Data Platform Gold Cloud Platform Gold Datacenter Gold Application Integration

Adastra Difference

Client Focused

Strategy Focused

We develop solutions that meet client's current and future business needs.

Value Driven We deliver data-driven value to our customers with measurable ROI.

Nimble

We share knowledge and expertise with nimble work structures that allow us to scale as needed.

Transparent

We work with our clients to manage scope, timelines and level of detail.

Best-In-Class Solutions

_

End-to-End Data Services

We provide services from inception to deployment and maintenance for effortless client execution.

Excellence of Execution

Nothing matters if it can't be delivered on time, on budget, and within scope.

Top Talent We hire only the best and the brightest and invest in their training and development.

Best Shoring

Top global experts can be assigned to take advantage of economies of scale and provide 24/7 delivery.

Digital

Data

AI & Analytics

Governance