
README.md 12/8/2022

1 / 5

The latest version of this content is available here.

Job Scheduling

Model Description
The model is inspired by a sheet-metal production line. Items arrive at the beginning of the line in batches of
10. Each item moves through the entire line. Only one item can be processed at a time on each machine. So at
most, there can only be four items in progress at any given time. A machine cannot accept a new item until
the current item is accepted by the downstream machine.

The time required at each machine varies from item to item. Because of this, processing sequence is central to
system performance. A good sequence minimizes the time a machine spends waiting for a downstream
machine.

Model Visualization

The color of each item represents how long it has been blocked by a downstream item. Items begin as light
gray. When an item is blocked, it fades more and more towards red. Once an item is finished, its color is an
indicator of the total time is was blocked during processing.

After all ten items in the batch have been completed, the model creates a new item that represents the batch
as a whole. The batch item's color is the average color of all the items in the batch. In addition, the batch item
is placed in one of three queues, depending on whether the average block time was high, acceptable, or low.

By running the model for a long time, you can see the effectiveness of the algorithm that sequences items.
The animation at the beginning of this article shows the result of choosing items at random; most batches
have a high block time, and very few end up with a low block time.

Brain Description
The Bonsai brain is designed to choose which item to process given the set of remaining items in the batch.
This decision happens whenever the first machine in the line becomes available and there is more than one
item remaining in the batch.

Observations (SimState)

https://github.com/flexsim/FlexSimAI/tree/main/bonsai/samples/JobScheduling


README.md 12/8/2022

2 / 5

JobTimes is a table with 10 rows and four columns. The value at row i, column j indicates the time
required by item i on machine j. The set of items shown in the table are the items that have not started
processing yet. Any extra rows show zero for the time required for that item.

This observation allows Bonsai to see what jobs are available and how long they will take at each
machine.

WIPTimes is an array with 6 values. These values are the times required by each of the three items in
progress for their remaining steps. If less than three items are present, trailing values are set to zero.

This observation allows Bonsai to see what's currently in progress.

BlockTime is a single number. It records the total block time for all items since the previous
observation. This value increases as items are blocked by other items in the line.

This observation allows Bonsai to understand its effectiveness. The brain's goal is to minimize this value.

NextJobMask is an array of values. It communicates which actions are valid. For example, if there are
only 6 items left in the batch, then it would be invalid to attempt to choose items 7, 8, 9, or 10.

NextJobMask prohibits Bonsai from taking invalid actions, but is not included in the learning
state.

Actions

NextJob represents the choice that Bonsai can make. The options for that choice start with J1 and end
with J10. If Bonsai chooses J2, that indicates that the second item of the remaining items should begin
processing next.

Using an Action Mask Concept

This brain contains two concepts. The first concept is called RemoveMask. Its purpose is to reduce the input
state by removing the NextJobMask observation. In order to train the brain, you'll need to build this concept.
Once the concept is built, you can train.

Goal

The goal of the brain is to minimize the BlockTime observation.

Training
As training progresses, Bonsai gets better and better at choosing jobs. Usually, Bonsai can become proficient
after one million iterations, with small improvements until around five million iterations.

Training Metrics

Bonsai tracks several metrics during training to determine its progress. The behavior of each metric is
described in the following list. For more information on each metric, see Bonsai's documentation on goals.

Goal Satisfaction usually starts above 95% and improves to 100% quickly during training.
Goal Robustness slowly climbs throughout training from around -0.05 to around 0.03.
Success starts at zero and improves quickly to 100%.

https://learn.microsoft.com/en-us/bonsai/inkling/keywords/goal/


README.md 12/8/2022

3 / 5

Episode Iterations remains constant at 800. None of the goals in this example allow for an early
termination of the episode.
Minimize - Mean Value starts at around 30 and decrease to around 16, if training runs long enough.
This value is a very direct measure of how well the brain is doing. The lower the block time on average,
the better.
Minimize - Final Value is whatever the block time accrued since the last action happens to be. This
value may or may not improve during training, since it is essentially a random value.
Minimize - Total Value is the sum of all block time across the episode. This value shows the most
dramatic improvement in Bonsai's performance:

Improvement in Total Block Time vs Training Iterations

Trained Brain Performance
You can see the difference between making random decisions and using Bonsai. The following screenshots are
the result of an experiment. Both screenshots were taken at the exact same time in the model. The difference
is that the model in the top screenshot chose random tasks and the model in the bottom screenshot used a
trained Bonsai brain.

Result using random decisions



README.md 12/8/2022

4 / 5

Result using a trained Bonsai brain

The following table summarizes the statistics visible in the two screenshots:

Random Bonsai

High Block Time Batches 5 1

Low Block Time Batches 2 6

Total Completed Items 93 97

As you can see, the trained brain has learned how to choose a good sequence of jobs to improve production.

Trying the Trained Brain for Yourself
The model in this example has a parameter called ActionMode that determines how the model makes
decisions. There are two options:

Random - the model chooses items to process at random.
Bonsai - the model chooses items to process using a bonsai brain.

To run the model and use the Bonsai brain, see the following steps. Note that the steps assume you have
FlexSim installed, as well as Docker Desktop. The steps also assume you already have access to a Bonsai
workspace and that you have trained a brain for this model, either by training the JobScheduling sample or by
making your own brain and simulator. If you do not have a workspace, see Getting Started with Bonsai.

In the Bonsai Interface in your browser:

1. Click on the brain that you have trained.
2. Click Export Brain button near the top-right corner.
3. Click the Export button to submit the request.
4. Wait several minutes for the brain to be exported. Once it is exported, you'll see it in the list of

Exported Brains on the right.
5. Click the ... button on the exported brain, and choose View deployment instructions

https://www.flexsim.com/
https://www.docker.com/products/docker-desktop/
https://docs.flexsim.com/en/23.0/ModelLogic/ReinforcementLearning/WorkingWithBonsai/GettingStarted/GettingStarted.html#setup
https://preview.bons.ai/


README.md 12/8/2022

5 / 5

6. Be sure you are on the ACR Download tab of the deployment instructions window.
7. Run the given commands in a terminal. These commands download and run a container that makes the

trained brain available as an HTTP service.

In FlexSim:

1. Open the model (JobScheduling.fsm).
2. In the View menu, choose Toolbox to open the Toolbox.
3. In the Toolbox, double click on the Parameter Table called Parameters
4. Double click on the Value column for the ActionMode parameter to reveal a combo box.
5. Change the ActionMode to Bonsai.
6. Reset and run the model.


