
What is Simba?

A Blockchain is a distributed ledger in which an immutable, and therefore non-repudiable,
record of transactions or events can be stored permanently and verifiably, without the need for a
central authority. Blockchains allow digital information to be distributed, but not copied, meaning
each individual transaction can only have one owner. This is enabled through the use of wallets,
containing (multiple) special asymmetric cryptosystem keys that are used to sign each
transaction, making all transactions identifiable and authentic. Blockchains that employ the use
of Smart contracts (programmable pieces of code) can ensure certain transactions are only
performed when specified conditions are met without the need for a human to manually
intervene --- smart contracts have been described as “cryptographic ‘boxes’ that contain value
and only unlock if certain conditions are met.” . Smart contracts are also deployed and written 1

as a transaction onto the Blockchain, which also makes them immutable and signed by the user
that deployed them to ensure the authenticity of the code is not compromised.

From an application standpoint however, this underlying tooling is not enough to build
production applications from. There are at least two other aspects that are needed: often,
applications need to store multiple files, documents or datasets alongside their blockchain
transactions, which are simply too large and expensive to store on-chain, hence off-chain
support is needed; and private blockchain access control layers are needed to provide the
ability to add authorization permissions to the on-chain and off-chain data that is shared,
allowing a user to decide with whom they share the data and transactions with, and how.

SimbaChain addresses these needed
features and more, the architure of the
system is shown to the right. It has a
core underlying goal of providing
tooling for developers to make it easy
to build and deploy blockchain
systems across multiple blockchains
and data stores. It provides a design
tool for generating a business process
model for tracking assets, which
auto-generates a smart contract and
corresponding API for integration with
external applications. The resulting
API provides REST based access to
smart contract methods that transact
on the ledger and provides access
control using groups for reading or

1 ​https://github.com/ethereum/yellowpaper

https://github.com/ethereum/yellowpaper

writing to such resources. All data smart contract API endpoints allow multiple data files to be
attached and stored in an
off-chain data store, such
as IPFS or Ceph. The
diagram to the right
expands on this to
illustrates the core features
of the system for each
level of the development
Blockchain stack.

For the ​Blockchain ​layer, Simba provides a generic API to multiple Blockchain systems, thus
the system does not have a dependency on a single Blockchain or DLT implementation.
Currently, the platform supports Ethereum and Stellar but several more are on the roadmap.
Furthermore, although SimbaChain is proprietary, it will soon release a code generation
capability that auto generates source code that binds to the specific Blockchain system and
Data Store the user has configured. This makes it possible for developers to export the system
into an enterprise environment or to use SimbaChain to create open source APIs for public use.

Smart Contracts provide the interface, and business logic, to what is written on the Blockchain
and what rules need to be
satisfied for this write
operation to take place. In
SIMBA Chain, Smart
Contracts are
automatically generated
from conceptual models
that define the Assets and
Transactions that transact
on those Assets. Such
models are specified using
the Simba’s Web App’s UI
shown on the right. A user
simply uses the GUI to
add Asset or Transactions
along with their methods
and parameters, and
SimbaChain automatically
generates the smart
contract for the platform
they select (in this case, Solidity code for Ethereum). It also generates a graph of the
relationships for the model as shown just below. The resulting smart contract once deployed on

the blockchain is dynamically exposed as a application REST interface for simpler external
application interaction with the blockchain.

Data Stores in SimbaChain uses the same adapter pattern as the Blockchain one; that is, a
single generic REST interface can support the simple integration of different data stores. Right
now Simba supports the
Ceph, IPFS and flat file
system based data
stores. As shown
opposite, data flows into
the system through the
application’s REST API
(generated by Simba) by
attaching one or multiple
files to the transaction.
This is achieved by
using a simple multipart
form post. Transactions
are then checked for access (see below) before being passed to the data bundling mechanism,
which stores all files into the Data Store and collects each hashcode into a JSON manifest file.
The manifest is then stored into the Data Store and its hashcode is stored onto the blockchain.
Using this mechanism, the system can easily retrieve all files by first retrieving the manifest then
using each hashcode to retrieve the files. The hash also serves as a digest to guarantee the
integrity of the data.

A private key of a ​Wallet is required to sign a transaction. In SimbaChain we do not store user’s
private keys, instead we provide a callback mechanism that allows the developer’s application
to sign transactions on behalf of their users. When a transaction request is made on Simba
using the application API, it sends it off to the blockchain adapter to generate the transaction
payload. This payload is then returned to the sender for signing. Along with the transaction
payload the headers include the external user ID so that user in the developers external system
can be extracted and their private key applied to the transaction, for signing. This signed
transaction is returned to Simba for submission to the blockchain. An example of this
implementation is in the Simba Dashboard, which implements this functionality in the “Make
Transactions” tab of the Application view, using an in browser implementation of a digital wallet.

SIMBA Chain provides core ​Access Control ​functionality to define rules on who has read and
write access to each Smart Contract method. It also defines separate access policies for
blockchain access and for data store access. Using this mechanism, you could enable a
permissioned File Store with a public Blockchain or you could make both permission using a
private Blockchain and Data store, as shown opposite. Permissions are set on each smart
contract method using group based authorization. A developer creates groups, either using the
Simba dashboard or programmatically using the API, and then a group can be associated to

each method in the app, assigning
read/write privileges and even embargoed
access, if desired. The developer then can
register external users IDs from their own
application (any user ID can be any
identifier generated from the developer’s
authentication system), and then they can
dynamically assign users to groups to give
each user the appropriate access. Upon
invocation, the external application
provides the external user ID. Simba then
looks up all of the Groups that the User belong too and checks whether any of those Groups
has write access to the smart contract method that the REST API corresponds to. If so, then the
invocation succeeds. If not, an error is thrown. By being able to programmatically define
groups, users and permissions, one can provide fine-grained control on who has access to what
for each component in an external application dynamically.

