
JSON Response

{
 "page": 1,
 "total_pages": 1,
 "per_page": 20,
 "total_items": 2,
 "items": [{}]
}

curl https://vizidox.com/api/<ENDPOINT> \
 -H "Authorization: Bearer <TOKEN>"

Make sure to replace <API_KEY> with your API key and <CLIENT_ID> with your Client ID

{
 "result": {},
 "meta": {
 "last_update": "Mon, 18 Apr 2022 15:05:00 GMT",
 "date": "Thu, 21 Apr 2022 15:17:27 GMT",
 "message": ":)",
 "version": "2022.04.1",
 "documentation": "https://docs.vizidox.com"
 }
}

{
 "id": "vizidox",
 "name": "Vizidox"
}

The File Object

{
 "file_hash": "056f32ee5cf49404607e368bd8d3f2af",
 "file_type": "image/jpeg"
}

The Credential Object

{
 "uid": "123e4567-e89b-12d3-a456-426655440000",
 "title": "Credential Title",
 "metadata": {"Name": "Special Credential"},
 "files": [
 {
 "file_hash": "056f32ee5cf49404607e368bd8d3f2af",
 "file_type": "image/jpeg"
 }
],
 "credentials": [
 {
 "uid": "123e4567-e89b-12d3-a456-426655440000",
 "title": "Different Credential Title",
 "metadata": {},
 "files": [
 {
 "file_hash": "056f32ee5cf49404607e368bd8d3f2af",
 "file_type": "application/pdf"
 }
],
 "credentials": [{}],
 "upload_date": "2020-01-11T15:34:05.811954+00:00",
 "tags": [
 "tagA"
]
 }
],
 "upload_date": "2020-02-11T15:34:05.811954+00:00",
 "tags": [
 "tagA",
 "tagB"
],
 "expiry_date": "2025-02-11T15:34:05.813229+00:00"
}

Credential Creation Request Body

{
 "title": "Example Credential",
 "metadata": {"Name": "Example"},
 "files": ["5d6abece8532c71bb51a749a6af06de7"],
 "credentials": ["123e4567-e89b-12d3-a456-426655440000"],
 "tags": ["tagA"],
 "expiry_date": "2030-01-01T15:34:05.814607+00:00"
}

Credential Schedule Request Body

{
 "title": "Example Credential",
 "metadata": {"Name": "Example"},
 "credentials": ["123e4567-e89b-12d3-a456-426655440000"],
 "tags": ["tagA"],
 "expiry_date": "2030-01-01T15:34:05.814607+00:00",
 "ignore_duplicate": "true"
}

Tag Addition Request Body

{
 "credentials": [
 {
 "credential_uid": "123e4567-e89b-12d3-a456-426655440000",
 "tags": ["tagA", "tagB", "tagC"]
 },
 {
 "credential_uid": "ce8bd4a4-e011-43ca-b775-d9569c690c42",
 "tags": ["tagA", "tagD"]
 }
]
}

Tag Replacement Request Body

{
 "credentials": [
 {
 "credential_uid": "123e4567-e89b-12d3-a456-426655440000",
 "tags": ["tagA", "tagB", "tagC"]
 },
 {
 "credential_uid": "ce8bd4a4-e011-43ca-b775-d9569c690c42",
 "tags": ["tagA", "tagD"]
 }
]
}

Credential Schedule Request Body

{
 "engine": "bitcoin",
 "credentials": [
 "123e4567-e89b-12d3-a456-426655440000",
 "ce8bd4a4-e011-43ca-b775-d9569c690c42"
]
}

The Job Object

{
 "uid": "123e4567-e89b-12d3-a456-426655440000",
 "partner": {
 "id": "vizidox",
 "name": "Vizidox"
 },
 "chain": "bitcoin",
 "tags": ["tagA"],
 "status": "finished",
 "start_date": "2020-02-11T15:34:05.814703+00:00",
 "issued_date": "2020-02-11T15:34:08.814719+00:00",
 "finished_date": "2020-02-11T15:38:05.814731+00:00",
 "failed_date": null,
 "created_date": "2020-02-10T18:34:05.814743+00:00",
 "scheduled_date": null
}

Introduction

Welcome to the VDX Core API, or Core API for short. The Core API is a REST API that provides

developers with a simple-to-use interface to several Blockchains for the purpose of issuing

Blockchain verifiable credentials. If you already have an existing solution in place, and would like

to plug in Blockchain functionality, the Core API is what you need.

In a very summarized flow, you only need to upload your files to the Core API, create a

Credential with it, by adding any additional metadata, and issue it onto the Blockchain of your

choice. After it has been fully issued and confirmed, the credential is perpetually and irrevocably

verifiable.

 Your uploaded files are not stored in the Core API servers. For the purposes of verifying,

only a hash is stored in a secure and encrypted database.

Every endpoint available on the Core API is described and accompanied by a visual example of

how the API responds. For an improved experience when integrating the Core API to your code,

you can import our libraries:

Python: vdx-helper on PyPi

All Python examples used in the examples are from the above library.

The Core API is available in two different environments - the "Demo" and the "Live"

environments. The former can be used for free testing, since it is connected to the Testnet

Blockchain and does not affect your live data. There is also no limits to the number of requests,

however any documents issued through the "Demo" environment have no validity. The "Live"

environment is connected to the Mainnet Blockchains, so its use is limited per the subscribed

tier or your contract with Vizidox.

For further information on each endpoint, feel free to consult the Core API Swagger UI page,

which can also be used to test these endpoints on the Demo environment.

Please check our Privacy Policy for more details on data collection. Furthermore, by using the

Core API you are agreeing to our Terms and Conditions.

Endpoint URLs

All endpoints and parameters are the same between both available environments. Although the

examples provided in the documentation display the Live environment URL, you just need to

switch the domain if you want to use the Demo environment instead.

The API Key used for authentication on each environment is different as well.

Environment URL

Live https://vizidox.com/api

Demo https://api-demo.vizidox.com/api

Pagination

Most of the provided API resources have support for bulk retrievals, such as the "Get All Files"

endpoint. The result for these endpoints is always paginated, and they contain common query

parameters for managing the pagination.

All of these parameters are fully optional and default values are applied when they are not

provided in the request.

Parameter Description Default

sort_by Field to sort the results by. Value is specific to the endpoint Endpoint

specific

order Order, ascending or descending, according to the sorty_by

parameter

asc

per_page Number of results per page. 0 for all results in one page 20

page Page number to request 1

Errors

All paginated endpoints return a specific error if any given pagination argument is incorrect:

id code Description

wrong_pagination_argument 422 Invalid argument used for pagination

Tags

The Core API allows the use of tags to further help with filtering and searching for credentials,

jobs and certificates. These tags can be added to credentials or jobs, and can then be used to

search for all credentials or jobs that contain those specific tags, or certificates created from

credentials or issued on jobs with specific tags.

All tags have a format that must be followed:

They must have 3 or more characters in length

Only alphanumeric, _ and - characters are allowed

Within the same credential or job, there can be no duplicate tags

Tags can be directly added to credentials when creating them, or after creation through specific

endpoints that are detailed below. Although you cannot add tags to Jobs on creation, they can

be added afterward in the same way as credentials.

On retrieval endpoints, tags can be used as query parameters to filter the results. The

parameters that can be used are:

Name Type Optional Description

and_tags Query Yes Obtain objects that contain all the listed tags. Format is

"and_tags=tagA,tagB"

or_tags Query Yes Obtain objects that contain at least one of the listed tags.

Format is "or_tags=tagA,tagB"

Authentication

The VDX Core API uses API Keys to authenticate requests, through the OAuth 2.0 Client

Credentials grant. The API Key is provided to you directly, or through your team settings on the

VDXapi Portal.

All API requests need to be made over HTTPS and with valid authentication.

First, use your API Key to request an authorization token from our authentication server.

Afterward, use that token in any API request.

You should not share your Key with any unauthorized third party, nor post it in any public area

such as a repository.

Issuing with Vizidox

With the Vizidox Core API, you can choose to either issue a file, metadata in json format, or both

at the same time. A single credential can also be issued with multiple files attached to it as well.

Furthermore, the credentials that are created on the system (which contain these files and

metadata) can also be linked to one another, creating a Credential Record. This means that you

can keep adding new credentials to this Record, updating the data without being able to edit old

entries, and these are all linked together.

To issue credentials, the Vizidox API works on a scheduling basis. Instead of manually starting

the issuing process when you register a credential on the system, you simply mark these

credentials to be issued on a specific Blockchain. All scheduled credentials are issued at the

same time when the next issuing date for your partner is. The frequency in issuings is either

defined by you when you manage your partner settings on the VDXapi Portal, or directly with

Vizidox depending on your contract.

To issue data to the Blockchain, there are three important steps:

Upload the file you need to certify – optional if you are only issuing metadata;

Create your credential, by providing the file hash and/or metadata you may wish to add;

Schedule the credential to be issued on a specific Blockchain.

Each of the endpoints required for these steps are explained in more detail in the Resources

section.

Resources

Response

All endpoints in the Core API follow a specific format which contains the results itself of the

endpoint, as well as an extra field for server information. This field is called "meta", and it

contains:

Last update: The date of the latest update on the Core API

Date: The current date of the request

Message: A message with any information regarding breaking changes on specific endpoints.

Version: The current version of the Core API

Documentation: A link to the API documentation

Partner

A Partner represents the client sending requests to the Core API. All credentials that are issued

by you are associated to your partner ID, and your API Key will only work with the correct partner

ID as well.

File

The File object represents a file uploaded to Vizidox by a Partner. It contains two fields:

Field Description

file_hash The hash of the file

file_type The MIME type of the file

The file_type parameter has to follow the MIME standard.

Upload File

Uploads a file to the Core API, and stores its hash for future issuing. This endpoint will not

trigger the issuing process for the uploaded file.

Parameter Type Optional Description

file Form

Data

No The file to be uploaded

ignore_duplicated Form

Data

Yes Set to true to upload even if the file has already

been uploaded in the past. Default is false.

It should be noted that if a file is not used to create a credential, it is automatically deleted from

the server after one hour.

HTTP Request

POST https://vizidox.com/api/files

Returns

If successful, the HTTP response is a 201 CREATED, along with a file object.

Errors

id code Description

no_file_on_payload 400 Missing the file in the request

file_already_exists 409 File has already been uploaded

Get All Files

Obtain all files uploaded by the Partner. Includes the pagination arguments.

Parameter Type Optional Description

file_hash Query Yes Specific file hash to search for

HTTP Request

GET https://vizidox.com/api/files

Pagination

sort_by parameter can be filled in with:

uploaded - the date the file was uploaded

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of files.

Get A File

Obtains a specific file

Parameter Type Optional Description

file_hash Path No File hash to obtain

HTTP Request

GET https://vizidox.com/api/files/<HASH>

Returns

If successful, the HTTP response is a 200 OK, along with a file object

Errors

id code Description

missing_file 404 The file was not found

Credential

Fingerprint of the file, including additional data provided by the Partner. Optionally, can only

contain metadata without a file.

Field Description

uid The unique identifier of the credential

title The title of the credential

metadata Additional metadata for the credential

files Files associated with the credential

credentials Other credentials associated with the credential

upload_date Date of credential upload

tags Tags to identify the credential

expiry_date Date the credential expires, if applicable

Create Credential

Creates a credential on the Core API, either from a file or from metadata. This endpoint will not

trigger the issuing process for the created credential. If no file is provided, the metadata

dictionary can not be empty.

Parameter Optional Description

title No The title of the credential

metadata No Additional metadata for the credential. Can be empty if file is

provided

files Yes List of one or more file hashes to associate the credential with

credentials Yes List of one or more credential UIDs to associate the credential to

tags Yes Tags for identifying the credential

expiry_date Yes Date of expiry of the credential

HTTP Request

POST https://vizidox.com/api/credentials

Returns

If successful, the HTTP response is a 201 CREATED, along with a credential object.

Errors

id code Description

missing_file_and_metadata 400 Either missing a file or metadata in the request

invalid_value 400 Invalid value in the request

missing_file 404 One or more of the given files cannot be found

no_json 415 Missing parameter in the request body

missing_field 422 Missing a field in the request body

Create and Schedule Credential

Creates a new credential on the Core API, either from a file uploaded directly on the same

request, or from the provided metadata. After the credential is created, it is automatically

scheduled for issuing on the provided engine. This endpoint will not trigger the issuing process

for the created credential. If no file is provided, the metadata dictionary can not be empty.

Parameter Type Optional Description

engine Path No The engine to schedule the created credential

file Form

Data

Yes The file to issue, optionally

title Form

Data

No The title of the credential

metadata Form

Data

No Additional metadata for the credential. Can be

empty if file is provided

credentials Form

Data

Yes List of one or more credential UIDs to associate the

credential to

tags Form

Data

Yes Tags for identifying the credential

expiry_date Form

Data

Yes Date of expiry of the credential

ignore_duplicate Form

Data

Yes Set to true to upload even if the file has already

been uploaded in the past. Default is false.

HTTP Request

POST https://vizidox.com/api/credentials/schedule/<engine>

Returns

If successful, the HTTP response is a 201 CREATED, along with a Job object.

Errors

id code Description

missing_file_and_metadata 400 Either missing a file or metadata in the request

invalid_tag 400 At least one tag has an invalid value

duplicated_tags 400 The provided tags contain duplicate values

invalid_expiry_date 400 The expiry date is invalid

missing_job 404 One or more of the given files cannot be found

file_already_exists 409 The file has already been uploaded

no_json 415 Missing parameter in the request body

missing_field 422 Missing a field in the request body

wrong_blockchain_engine 422 The provided blockchain engine is invalid

Get All Credentials

Obtains all credentials previously created by the Partner. Includes the pagination arguments.

Parameter Type Optional Description

uid Query Yes Specific Credential UID to search for

upload_date_from Query Yes Obtain Credentials created after this date

upload_date_to Query Yes Obtain Credentials created up to this date

and_tags Query Yes Obtain Credentials that contain all the listed tags.

Format is "and_tags=tagA,tagB"

or_tags Query Yes Obtain Credentials that contain at least one of the

listed tags. Format is "or_tags=tagA,tagB"

HTTP Request

GET https://vizidox.com/api/credentials

Pagination

sort_by parameter can be filled in with (Default is created_date):

title - the title of the credential

upload_date - The date the credential was created

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of credentials.

Get A Credential

Obtains a specific credential

Parameter Type Optional Description

cred_uid Path No Credential UID to obtain

HTTP Request

GET https://vizidox.com/api/credentials/<UID>

Returns

If successful, the HTTP response is a 200 OK, along with a credential object

Errors

id code Description

missing_credential 404 The credential was not found

Add Tags

Add new tags to a credential. This endpoint can be used to update more than one credential, by

providing a list in the correct format on the body of the request.

Old tags will not be deleted.

HTTP Request

PATCH https://vizidox.com/api/credentials

Returns

If successful, the HTTP response is a 200 OK with no additional content

Errors

id code Description

invalid_tag 400 At least one tag is in an incorrect format

duplicated_tags 400 At least one tag is repeated in the request

missing_credential 404 One or more credentials were not found

Replace Tags

Replace all the tags in a credential. This endpoint can be used to update more than one

credential, by providing a list in the correct format on the body of the request.

Old tags are all deleted.

HTTP Request

PUT https://vizidox.com/api/credentials

Returns

If successful, the HTTP response is a 200 OK with no additional content

Errors

id code Description

invalid_tag 400 At least one tag is in an incorrect format

duplicated_tags 400 At least one tag is repeated in the request

missing_job 404 One or more jobs were not found

Delete Credential Tags

Deletes the tag from the given credential.

Parameter Type Optional Description

uid Path No UID of the credential to update

tag query No Tag to be deleted from the credential

HTTP Request

PUT https://vizidox.com/api/credentials

Returns

If successful, the HTTP response is a 200 OK with no additional content

Errors

id code Description

tag_does_not_exist 404 Tag does not exist in the credential

missing_credential 404 Credential was not found

Schedule Credentials

Schedules one or more existing credentials on the Core API. The given credentials will be added

to the current scheduled job, to be issued at the next issuing schedule.

A Credential cannot be issued more than once on the same Blockchain Engine, however it can

be issued over multiple engines.

Parameter Optional Description

engine No Blockchain engine to schedule the credentials on

credentials No List of credentials to schedule

HTTP Request

POST https://vizidox.com/api/credentials/schedule

Returns

If successful, the HTTP response is a 201 CREATED, along with a job object.

Errors

id code Description

missing_credential 404 One or more of the credentials cannot

be found

credential_already_scheduled_or_issued 409 One or more of the credentials have

already been scheduled or issued

no_json 415 Missing the request body

wrong_blockchain_engine 422 Given engine is incorrect or invalid

missing_field 422 Missing a field in the request body

Unschedule Credential

Unschedules an existing (and previously scheduled) Credential from the given Blockchain

engine. If the Credential is not scheduled nor issued on any other Blockchain engine, then it is

also deleted.

Parameter Optional Description

cred_uid No UID of the credential to unschedule

engine No Blockchain engine the credential is scheduled on

HTTP Request

DELETE https://vizidox.com/api/credentials/<UID>/unschedule/<engine>

Returns

If successful, the HTTP response is a 200 OK.

Errors

id code Description

missing_credential 404 The Credential cannot be found

missing_job 404 There is no scheduled Job for the given engine

credential_not_scheduled 409 The Credential is not scheduled on the given engine

wrong_blockchain_engine 422 Given engine is incorrect or invalid

Job

A Job is a Blockchain transaction containing a bundle of credentials. A job has several status:

Scheduled - The bundle of credentials on the Job have yet to be issued on the Blockchain,

but will be issued on the next schedule.

Started - The Blockchain issuing process has started and is in progress.

Unconfirmed - The Blockchain issuing process has successfully finished, but the

corresponding transaction has yet to be confirmed on the Blockchain.

Finished - The Blockchain issuing transaction has been confirmed. All credentials issued in

this bundle will fully pass the verification process. This status is final.

Failed - Something went wrong with the Blockchain issuing process, and the credentials have

not been issued. They will have to be added again to the next scheduled job. This status is

final.

Field Description

uid The unique identifier of the job

partner The partner issuing the job

chain The blockchain engine to issue the job on

tags Tags to identify the job

status Current status of the job

created_date Date the job was created at

start_date Date the job started

issued_date Date the job finished issuing

finished_date Date the job was confirmed on the Blockchain, if in the finished status

failed_date Date the job failed, if in the failed status

scheduled_date Date the job is scheduled to run, if in the scheduled status

Get All Jobs

Obtains all the Partner's jobs. Includes the pagination arguments and tags to filter by.

Parameter Type Optional Description

uid Query Yes Specific Credential UID to search for

status Query Yes Search for jobs in given status

start_date_from Query Yes Obtain Jobs that started issuing after this date

start_date_until Query Yes Obtain Jobs that started issuing up to this date

issued_date_from Query Yes Obtain Jobs that finished issuing after this date

issued_date_until Query Yes Obtain Jobs that finished issuing up to this date

created_date_from Query Yes Obtain Jobs created after this date

created_date_until Query Yes Obtain Jobs created up to this date

HTTP Request

GET https://vizidox.com/api/jobs

Pagination

sort_by parameter can be filled in with (default is created_date):

status - Status of the job

chain - Blockchain engine the job was issued on

start_date - Date the job started issuing

issued_date - Date the job completed issuing

ready_date (=finished_date) - Date the Job's Blockchain transaction was confirmed

failed_date - Date the Job failed issuing

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of jobs.

Get A Job

Obtains a specific Job

curl -H "Content-Type: application/json" \
 -d '{"grant_type":"client_credentials","client_secret":"<API_KEY>}","client_id":"<CLIENT_ID>"}'
 https://vizidox.com/auth/realms/core-api/protocol/openid-connect/token

curl -X POST "https://vizidox.com/api/files" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/files" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/files/<HASH>" -H "accept: application/json" -H "authorization: Bearer <TOKEN>

curl -X POST "https://vizidox.com/api/credentials" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"
 -H "Content-Type: application/json" -d "{ \"title\": \"Example Title\", \"metadata\": {
 \"files\": [\"056f32ee5cf49404607e368bd8d3f2af\"], \"credentials\": [\"123e4567-e89b-12d3-a456-426655440000
 \"tags\": [\"TagA\"], \"expiry_date\": \"2020-02-11T15:34:05.814607+00:00\"}"

curl -X POST "https://vizidox.com/api/credentials/schedule/<engine>" -H "accept: application/json"
 -H "Content-Type: multipart/form-data" -F "file=@/path/to/file.pdf;type=application/pdf"
 -F "credential_details={\"title\": \"Example Title\", \"metadata\": {\"Name\": \"Example
 \"credentials\": [\"123e4567-e89b-12d3-a456-426655440000\"], \"tags\": [\"TagA\"], \
 \"expiry_date\": \"2029-02-11T15:34:05.814607+00:00\", \"ignore_duplicate\": \"true\"}"

curl -X GET "https://vizidox.com/api/credentials" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/credentials/<UID>" -H "accept: application/json" -H

curl -X PATCH "https://vizidox.com/api/credentials" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"
 -H "Content-Type: application/json" -d "{\"credentials\": [{\"credential_uid\":
 \"tags\": [\"tagA\",\"tagB\",\"tagC\"]}]}"

curl -X PUT "https://vizidox.com/api/credentials" -H "accept: application/json" -H "Content-Type: application/json"
 -H "authorization: Bearer <TOKEN>" \
 -d "{ \"credentials\": [{\"credential_uid\": \"123e4567-e89b-12d3-a456-426655440000

curl -X PATCH "https://core-dev.vizidox.com/api/credentials/<UID>/delete_tag?tag=<TAG>>" -H

curl -X POST "https://vizidox.com/api/credentials/schedule" -H "accept: application/json"
 -H "Content-Type: application/json" -d "{\"engine\": \"bitcoin\", \"credentials

curl -X DELETE "https://vizidox.com/api/credentials/<UID>/unschedule/<engine>" -H "accept: application/json"

curl -X GET "https://vizidox.com/api/jobs" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/jobs/<UID>" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

cURL Python

Introduction

Endpoint URLs

Pagination

Tags

Authentication

Issuing with Vizidox

Resources

Response

Partner

File

Credential

Job

Certificate

Verification

Revocation

Sign up for a developer key

Homepage

VDX Helper Library

Search

https://en.wikipedia.org/wiki/Representational_state_transfer
https://pypi.org/project/vdx-helper/
https://api-demo.vizidox.com/apidocs/
https://vizidox.com/privacypolicy
https://vizidox-shared-files.s3.eu-west-2.amazonaws.com/terms_conditions/Terms+of+Use+Vizidox.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://docs.vizidox.com/#
https://docs.vizidox.com/#
https://api.vizidox.com/
https://vizidox.com/
https://pypi.org/project/vdx-helper/

Tag Addition Request Body

{
 "jobs": [
 {
 "job_uid": "123e4567-e89b-12d3-a456-426655440000",
 "tags": ["tagA", "tagB", "tagC"]
 },
 {
 "job_uid": "ce8bd4a4-e011-43ca-b775-d9569c690c42",
 "tags": ["tagA", "tagD"]
 }
]
}

Tag Replacement Request Body

{
 "jobs": [
 {
 "job_uid": "123e4567-e89b-12d3-a456-426655440000",
 "tags": ["tagA", "tagB", "tagC"]
 },
 {
 "job_uid": "ce8bd4a4-e011-43ca-b775-d9569c690c42",
 "tags": ["tagA", "tagD"]
 }
]
}

The Certificate Object

The Verification Object

Parameter Type Optional Description

job_uid Path No Job UID to obtain

HTTP Request

GET https://vizidox.com/api/jobs/<UID>

Returns

If successful, the HTTP response is a 200 OK, along with a job object

Errors

id code Description

missing_job 404 The job was not found

Add Tags

Add new tags to a job. This endpoint can be used to update more than one job, by providing a

list in the correct format on the body of the request.

Old tags will not be deleted.

HTTP Request

PATCH https://vizidox.com/api/jobs

Returns

If successful, the HTTP response is a 200 OK with no additional content

Errors

id code Description

invalid_tag 400 At least one tag is in an incorrect format

duplicated_tags 400 At least one tag is repeated in the request

missing_job 404 One or more jobs were not found

Replace Tags

Replace all the tags in a job. This endpoint can be used to update more than one job, by

providing a list in the correct format on the body of the request.

Old tags are all deleted.

HTTP Request

PUT https://vizidox.com/api/jobs

Returns

If successful, the HTTP response is a 200 OK with no additional content

Errors

id code Description

invalid_tag 400 At least one tag is in an incorrect format

duplicated_tags 400 At least one tag is repeated in the request

missing_job 404 One or more jobs were not found

Get Credentials in Job

Obtains all credentials issued in a specific job. Includes the pagination arguments.

Parameter Type Optional Description

job_uid Path No Job UID to obtain the credentials

HTTP Request

GET https://vizidox.com/api/jobs/<UID>/credentials

Pagination

sort_by parameter can be filled in with (Default is created_date):

status - The current status of the job

chain - The blockchain engine the job was issued on

created_date - The date the job was created

start_date - The date the issuing process of the job started

issued_date - the date the issuing process of the job finished

ready_date - The date the issuing transaction of the job was confirmed on the blockchain

failed_date - The date the job issuing failed

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of credentials.

Get Certificates in Job

Obtains all certificates issued in a specific job. Includes the pagination arguments.

Parameter Type Optional Description

job_uid Path No Job UID to obtain the certificates

HTTP Request

GET https://vizidox.com/api/jobs/<UID>/certificates

Pagination

sort_by parameter can be filled in with (Default is issued_date):

issued_date - the date the certificate was issued on

chain - The Blockchain engine the certificate was issued on

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of certificates.

Certificate

A Certificate is a verifiable descriptor for a credential issued over the Blockchain. The Certificate

will contain all relevant data to connect the Credential to a Blockchain transaction. There is a

one to one relationship between certificates, credentials and Blockchain engines: Each issued

Credential has one Certificate per Blockchain engine.

Field Description

uid The unique identifier of the certificate

partner The partner who issued the certificate

credential The issued credential

issued_date The date the credential was issued on the Blockchain

signature Credential hashed and signed by the partner's key, which was issued

revoked_date Date of revocation, if applicable

last_verification The status and date of the latest verification of the certificate

Get All Certificates

Obtains all certificates issued by the partner. Includes the pagination arguments.

Parameter Type Optional Description

uid Query Yes Certificate UID to filter by

job_uid Query Yes Obtain certificates issued in job

credential_uid Query Yes Obtain the credential's certificate

issued_date_from Query Yes Obtain certificates that were issued after this date

issued_date_until Query Yes Obtain certificates that were issued up to this

date

verification_status Query Yes Obtain certificates with a specific verification

status

You can also use either the corresponding Credential or Job tags to search for certificates, even

though the Core API does not support the addition of tags per certificates. These work in the

same way as all other endpoints which contain tags as a filter option:

and_credential_tags + or_credential_tags: To filter certificates of credentials that are

identified by the given tags.

and_job_tags + or_job_tags: To filter certificates issued on jobs that are identified by the

given tags.

HTTP Request

GET https://vizidox.com/api/certificates

Pagination

sort_by parameter can be filled in with (Default is issued_date):

issued_date - the date the certificate was issued on

chain - The Blockchain engine the certificate was issued on

Returns

If successful, the HTTP response is a 200 OK, along with a paginated object containing the list

of certificates.

Download Certificate JSON

Downloads a text file containing all relevant certificate data in a JSON format. Can also be called

the proof file, and is usable for verification on the Core API.

Parameter Type Optional Description

cert_uid Path No Certificate UID to download

HTTP Request

GET https://vizidox.com/api/certificates/<UID>/download

Returns

If successful, the HTTP response is a 200 OK, along with a text file containing a JSON with the

certificate data.

Errors

id code Description

missing_certificate 404 The certificate was not found

Verification

Verification is the process through which any issued credential can be validated. This only

applies to credentials that have been fully issued on the Blockchain, so they cannot be simply

scheduled for issuing.

The verification consists of six different steps, and can result in several results:

Ok - All steps fully passed.

Pending - At least one step is still pending some action; for example, if the Blockchain

transaction is yet to be confirmed, the corresponding step will result in a pending status.

Expired - The credential has expired, per the defined expiry date provided on creation.

Revoked - The credential and its corresponding certificate has been revoked, so it is no

longer considered valid.

Failed - At least one verification step failed, meaning that Vizidox cannot guarantee the

credential's validity.

Error - An unexpected error occured during the verification. Contact with Vizidox support if

this problem persists.

The obtained final result of verification will depend on the result of each individual verification

step. If one step fails during the process, then no more steps will be tested since the credential

is no longer considered valid by default. The six executed steps are:

Name Description

Certificate

Integrity

Checks if the Certificate has not been tampered with, including the

credential metadata

Blockchain

Anchoring

Checks if the Credential has been issued and confirmed on the

Blockchain

Issuer

Authenticity

Checks if the issuer's identity is valid

File Integrity Checks if the file has not been tampered with, retaining its original

content

Expiry Date Checks if the credential is still valid as of this date

Revocation Date Checks if the credential has been revoked

Each of these steps have their own status at the end of the verification, and these are used to

determine the final status. The possible verification step status are:

Not Started - The step was skipped due to an earlier step failing.

Passed - The step passed.

Pending - The validation is still pending some other action, such as Blockchain confirmation.

Failed - The step failed.

Error - An error occurred during the execution.

Verify By Certificate UID

Verifies a Certificate via its unique identifier

Parameter Type Optional Description

cert_uid Path No Certificate UID to verify

HTTP Request

GET https://vizidox.com/api/verify/<UID>

Returns

If successful, the HTTP response is a 200 OK, along with the verification result

Errors

id code Description

missing_certificate 404 The certificate was not found

Verify By Credential UID

Verify all certificates corresponding to the credential, via the credential's unique identifier.

Includes the pagination arguments.

Parameter Type Optional Description

cred_uid Path No Credential UID to verify

HTTP Request

GET https://vizidox.com/api/verify/credential/<UID>

Returns

If successful, the HTTP response is a 200 OK, along with the verification result

Errors

id code Description

missing_credential 404 The credential was not found

Verify By Certificate File

Verifies a specific certificate, by uploading its certificate proof file

HTTP Request

POST https://vizidox.com/api/verify/upload/certificate

Returns

If successful, the HTTP response is a 200 OK, along with the verification result

Errors

id code Description

no_file_on_payload 400 No file was uploaded

missing_certificate 404 The certificate was not found

Verify By File

Verifies all certificates of the uploaded file Includes the pagination arguments.

HTTP Request

POST https://vizidox.com/api/verify/upload/file

Returns

If successful, the HTTP response is a 200 OK, along with a paginated list of all verification

results

Errors

id code Description

no_file_on_payload 400 No file was uploaded

missing_certificate 404 The certificate was not found

Revocation

All issued credentials can be revoked if you need to. If for example, there was some error in the

issued data and it should not be considered valid, revoking its corresponding certificate will

guarantee that all future verifications fail.

Revoke Certificate By UID

Revokes a certificate, identified by its UID

Parameter Type Optional Description

cert_ui Path No Certificate UID to revoke

HTTP Request

POST https://vizidox.com/api/certificates/<UID>/revoke

Returns

If successful, the HTTP response is a 200 OK, along with the revocation date.

Errors

id code Description

missing_certificate 404 The certificate was not found

unconfirmed_certificate_transaction 409 The certificate blockchain issuing transaction

has not yet been confirmed

certificate_already_revoked 409 The certificate has already been revoked

Revoke Certificate By Credential UID

Revokes the credential's certificate for the given Blockchain engine.

Parameter Type Optional Description

cred_uid Path No Credential UID to revoke

engine Path No Blockchain Engine of issuing

HTTP Request

POST https://vizidox.com/api/credentials/<UID>/revoke/{engine}

Returns

If successful, the HTTP response is a 200 OK, along with the revocation date.

Errors

id code Description

missing_credential 404 The credential was not found

missing_certificate_by_credential 404 The credential has not been issued on the

given engine

unconfirmed_certificate_transaction 409 The certificate blockchain issuing transaction

has not yet been confirmed

certificate_already_revoked 409 The certificate has already been revoked

curl -X GET "https://vizidox.com/api/jobs/<UID>" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X PATCH "https://vizidox.com/api/jobs" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"
 -H "Content-Type: application/json" \
 -d "{\"jobs\": [{\"job_uid\": \"123e4567-e89b-12d3-a456-426655440000\",\"tags

curl -X PUT "https://vizidox.com/api/jobs" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"
 -H "Content-Type: application/json" \
 -d "{\"jobs\": [{\"job_uid\": \"123e4567-e89b-12d3-a456-426655440000\",\"tags\"

curl -X GET "https://vizidox.com/api/jobs/<UID>/credentials" -H "accept: application/json"

curl -X GET "https://vizidox.com/api/jobs/<UID>/certificates" -H "accept: application/json"

{
 "certificate": {
 "uid": "e2f52c36-7d39-48d7-8617-030891304cc2",
 "partner": {
 "id": "vizidox",
 "name": "Vizidox"
 },
 "credential": {
 "uid": "29d6f14e-a770-4f1c-8d6e-2e1aa4e9881a",
 "title": "Credential Title",
 "metadata": {"approved_by": "John Smith"},
 "files": [
 {
 "file_hash": "056f32ee5cf49404607e368bd8d3f2af",
 "file_type": "image/jpeg"
 }
],
 "credentials": [],
 "upload_date": "2020-02-11T15:34:05.811954+00:00",
 "tags": [
 "tagA",
 "tagB",
 "tagC"
],
 "expiry_date": "2025-02-11T15:34:05.813229+00:00"
 },
 "issued_date": "2020-02-11T15:34:05.813217+00:00",
 "signature": "H+oPfLTKcG19O9yGgV1ftXPRXTvsMRXd22Uw8vyTuSlOTff+HUwvB8yFuKw/YzAFShDIvsjn4XBmsVGTb7iz2I8="
 },
 "revoked_date": null,
 "last_verification": {
 "status": "ok",
 "timestamp": "2021-05-07T19:21:04.813289+00:00"
 }
}

curl -X GET "https://vizidox.com/api/certificates" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/certificates/<UID>/download" -H "accept: application/json"

{
 "verification": {
 "certificate":
 {
 "name": "Checking certificate integrity",
 "description": {
 "hash_function": "SHA256",
 "actual_hash": "3fb4ef9b874803631b0fdd41f42bac952a2f5e9501d4e8ff3d0f13bd113435aa"
 "expected_hash": "3fb4ef9b874803631b0fdd41f42bac952a2f5e9501d4e8ff3d0f13bd113435aa"
 },
 "status": "passed"
 },
 "blockchain":
 {
 "name": "Checking certificate is anchored to the blockchain",
 "description": {
 "actual_root": "1677894799b64e8f3c8ff1fa519ae3dab489fa86e2d6e2794e7c08a10290de95"
 "certificate_root": "1677894799b64e8f3c8ff1fa519ae3dab489fa86e2d6e2794e7c08a10290de95"
 "tx_id": "42d9914d9eee0d45ce870e1f56c0c5b71167754f03cc789bec8392fe20673730",
 "tx_url": "https://blockchair.com/bitcoin/testnet/transaction/42d9914d9eee0d45ce870e1f56c0c5b71167754f03cc789bec8392fe20673730"
 "confirmations": "3944"
 },
 "status": "passed"
 },
 "issuer":
 {
 "name": "Checking issuer authenticity",
 "description": {
 "issuer_name": "Vizidox",
 "signature_scheme": "ECDSA",
 "partner_public_key": "mgiYnTTZmMG6SJAEBKd724YWFMLDrCF1Y1",
 "message": "c3c47e03d650bc3feffa24c5a2620ba1b4f894030df2ab2c6a809e7aa84c8c06",
 "signature": "H7E7JBfVt68MMLm9RlVXphPVsnwriC1DFF2iXOQ2VipDMWWd73agLskIc241UEplnhm/u7ChxkdoTUqqAOP0kWQ="
 },
 "status": "passed"
 },
 "file":
 {
 "name": "Checking file integrity",
 "description": {
 "hash_function": "SHA3-256",
 "expected_file_hash": "5f476523425b99e128ea4de78763430e66c2bb75f99571b181104791a4f843f3"
 "actual_file_hash": "5f476523425b99e128ea4de78763430e66c2bb75f99571b181104791a4f843f3"
 },
 "status": "passed"
 },
 "expiry":
 {
 "name": "Checking expiry date",
 "description": {
 "issued_date": "2021-09-24T14:30:08.056293+00:00",
 "expiry_date": null
 },
 "status": "passed"
 },
 "revocation":
 {
 "name": "Checking revocation date",
 "description": {
 "is_revoked": false,
 "revocation_address": "mniEnS85X1iagmYYPNYDR9djtDufriEF2H",
 "revocation_address_url": "https://blockchair.com/bitcoin/testnet/address/mniEnS85X1iagmYYPNYDR9djtDufriEF2H"
 "revocation_date": null
 },
 "status": "passed"
 }
 },
 "result": {
 "status": "ok",
 "timestamp": "2021-10-21T14:45:55.207146+00:00"
 }
}

curl -X GET "https://vizidox.com/api/verify/<UID>" -H "accept: application/json" -H "authorization: Bearer <TOKEN>"

curl -X GET "https://vizidox.com/api/verify/credential/<UID>" -H "accept: application/json"

curl -X POST "https://vizidox.com/api/verify/upload/certificate" -H "accept: application/json"

curl -X POST "https://vizidox.com/api/verify/upload/file" -H "accept: application/json" -H

curl -X POST "https://vizidox.com/api/certificates/<UID>/revoke" -H "accept: application/json"

curl -X POST "https://vizidox.com/api/credentials/<UID>/revoke/{engine}" -H "accept: application/json"

