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Introduction

Clean energy technologies are increasingly being 
deployed on electric distribution systems and 
retail electricity pricing is evolving to support the 
transition. This evolution involves moving from rates 
characterized by flat energy charges and net metering 
policies for distributed energy resources (DERs) 
towards modern structures that more accurately 
reflect a utility’s costs to supply and deliver electricity. 
These include time-of-use schedules, demand charges, 
feed-in tariffs (FITs) for over-generation by DERs, and 
other dynamic pricing signals. These modern rate 
structures provide economic signals that encourage 
energy consumption during periods when supply is 
abundant and discourage consumption during periods 
when demand is higher and grid resources are more 
constrained.

Historically, net energy metering (NEM) policies 
have been the dominant compensation mechanism 
driving renewable DER growth in the United States, 
the large majority of which has been small-scale solar 
photovoltaics.(1) NEM requires utilities to compensate 
excess production from customer-owned generation 
at the relatively static retail electricity price. Under this 
paradigm, small-scale (<1MW) solar generation has 
grown an average of 27% per year from 2014-2018, and 
currently provides 33% of all solar energy in the United 
States.(2) Clearly, NEM policies have been an effective 
tool to stimulate early investment in distributed clean 
energy; however, policymakers have begun to shift 
away from this model for future distribution systems.
(3) 

NEM becomes less efficient as DER penetrations 
increase to substantial levels. As this occurs, the grid 
can become oversupplied with a particular form of 
generation (e.g., solar). This decreases the marginal 
value of each kilowatt-hour generated and increases 
grid management costs to accommodate the excess 
energy. Such a scenario is now common in California 
where mid-day solar penetrations can be so great 
that more traditional generation resources are 
forced to ramp down their operation in response.(4) 
As distributed generation levels rise, compensating 
DERs at static retail energy rates is an increasingly 
inaccurate reflection of their marginal value. Moreover, 
the intermittency of these DERs requires the utility to 
provide backup capacity to satisfy customer demand 
when the sun is not shining or the wind is not blowing. 
In both cases, DER growth with static net metering 
compensation leaves utilities to make up the balance in 
a skewed equation of value.

The decentralized and intermittent grid of today is 
different from the centralized and dispatchable grid 

of previous decades. As a 
result, static electricity rates 
that once provided a simple 
and effective mechanism for 
suppliers to recuperate costs 
are becoming increasingly 
inefficient and detached from 
the evolving price dynamics in 
organized wholesale markets 
with increasing renewable penetrations.(5,6) For 
this reason, utilities are now tackling the problem of 
designing retail rates that incentivize and shape their 
customers’ energy consumption to better align with 
periods when energy is more abundant. For customers, 
this could mean enacting behavioral changes that 
adjust their traditional patterns of electricity usage to 
take advantage of reduced costs during certain times 
of day. It could also mean employing “load shifting” 
technologies such as home batteries, electric vehicles, 
or smart thermostats to automate the shifting of 
electricity usage behind the meter and capitalize on 
periods of low retail prices. In either case, both the 
utility and the customer benefit economically: the 
utility by receiving demand profiles that are less costly 
to serve and the customer by reducing their monthly 
electricity bill.

In the past, regulators typically pushed back on 
dynamic retail electricity pricing because of concerns 
with exposing customers to increased uncertainty 
in their energy bills.(7) Additionally, behavioral and 
psychological changes are notoriously difficult to 
effect. Today, however, the emergence of cost-
effective battery storage is providing new impetus and 
feasibility to retail rate reforms. Distributed storage 
can overcome traditional psychological and regulatory 
barriers by automating changes in consumption 
patterns in response to new price signals. This 
includes arbitraging energy rates between periods 
with differing time-of-use prices, shaving peaks to 
reduce demand charges on monthly bills, and reducing 
exports in jurisdictions where compensation for excess 
renewable energy is only a fraction of the rate for 
electricity purchased from the grid. In this way, storage 
coupled with dynamic retail rates provide a promising 
path forward for electricity distribution networks in 
transition.

Insights

We propose two prerequisites for DER-focused retail 
rate design to be successful in uncovering the true 
economic value of these resources:

• Shifting of customer electricity demand from 
one period of the day to another must be auto-
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matable. Relying on behavioral changes alone 
will not result in sufficient adoption to effect 
systemic change.

• Utilities must understand how various rate 
structures will modify customer demand pro-
files, both at the individual customer level and in 
aggregate for a given penetration level of distrib-
uted storage. This requires advanced analytical 
modeling and optimization.

If the above prerequisites are met, retail rates 
themselves have the ability to “shape” or “mold” 
customer demand profiles to 
better align with periods when 
supply is abundant and associated 
costs to serve demand are low. 
The overall effect should be one 
of net economic benefit to both 
the utility and its customers: a rare 
win-win outcome.

To inform an example of how 
retail rates can be used to shape customer demand, 
consider first several relatively standard retail rate 
structures: time-of-use (TOU) rates, demand charges, 
and feed-in tariffs (FITs). TOU rates charge customers 
different amounts based on when electricity is 
consumed. They generally encourage customers to 
shift some of their energy consumption from periods 
of high prices to periods of low prices. A battery can 
derive value from TOU rates by arbitraging the rate 
schedule; that is, it can charge when prices are low and 
discharge when prices are high, saving the customer 
the difference between the two rates. Such rates may 
vary seasonally, by day of week, and/or by hour of day. 
Whereas TOU rates focus on energy volumes (kWh), 
demand charges bill a customer based on their 
maximum power consumption (kW). These too provide 
value to a battery insofar as it can discharge when the 
customer’s native demand (demand in absence of any 
on-site generation or storage) is highest, reducing the 
maximum amount of power the customer must draw 
from the grid. This mode of operation is often referred 
to as “peak shaving”. Finally FITs offer a third revenue 
stream for a battery in jurisdictions without NEM where 
compensation for energy exported to the grid is less 
than the retail rate the customer would pay to buy that 
energy back. Such a structure discourages export of 
electricity during periods when rooftop solar generates 
more electricity than the customer’s demand, and 
batteries can “soak up” this excess energy, storing it 
for discharge later when needed. This avoids the loss 
in value that would result from sending the over-
generation back to the grid, resulting in a net financial 
gain for the customer. For a more detailed discussion 
of modern retail rate structures and their use in 
conjunction with DERs and battery storage, see Faruqui 
2018.(8)

Retail Case Study – Rooftop Solar, No Battery

With the above rate structures in mind, we examine 

the retail bill dynamics of a hypothetical commercial 
customer in California with a large rooftop solar 
installation and a demand profile that peaks sharply 
in the evening hours. Figure 1 illustrates hourly energy 
profiles for such a customer on a representative day in 
July. We analyze the case where the customer’s retail 
rate schedule includes a two-period TOU-based energy 
rate (on-peak hours are shaded red in the figure), a 
demand charge calculated from the maximum demand 
in any hour, and a FIT that compensates electricity 
sent back to the grid at a rate significantly below the 
customer’s retail energy rate. Additional details of the 

retail rate schedule analyzed are provided in Table 1.
As seen in the figure, the customer generates more 

solar energy than their native electricity demand in 
hours-ending 10 AM through 4 PM. In this example, 
the misalignment between the customer’s native 
demand profile and that of the solar generation 
results in significant and frequent over-generation for 
photovoltaic systems of any appreciable size. Since 
there is no battery to consume the surplus energy, 
it must be sent back to the grid and the customer is 
compensated through the FIT at less than half the rate 
they would pay for energy during the on-peak period. 
This represents a significant loss of value compared to 
if they were able to consume that energy behind the 
meter to directly offset their demand.

The sharp evening demand peak seen in Figure 1 
also represents a financial hurdle for the customer. It 
contributes an out-sized cost to the customer’s energy 

RATE COMPONENT SCHEDULE RATE 
ON-PEAK ENERGY M-F, hour-ending 1200-2200 $0.23/kWh 
OFF-PEAK ENERGY M-F, hour-ending 0100-1100, 2300-2400 

Sa-Su & holidays, all hours 
$0.15/kWh 

DEMAND Maximum across all hours of billing cycle $12/kW-month 
SOLAR FIT All hours, all kWh sent to grid $0.10/kWh 

 
Table 1. Example July rate schedule for a commercial customer in California.

 

Figure 1. Hourly native demand, on-site solar generation, and net 
demand for a commercial customer in California with a late-
evening peaking load on a representative day in July. Red shading 
denotes hours that correspond to the customer’s on-peak TOU rate 
period. Surplus mid-day solar and a sharp peak in evening demand 
present economic opportunities for a battery relative to TOU rates, 
demand charges, and FITs.



IAEE Energy Forum  /  Third Quarter 2020

p.7

bill for high levels of demand that persist for only a few 
hours of the day. In particular, the single highest hourly 
demand, occurring in hour-ending 9 PM, is more than 40 
kW greater than the second-highest hourly demand. With 
a demand rate of $12/kW-month, the customer could 
save more than $500 on their monthly bill if they were 
able to reduce their usage in just this single peak hour 
of the day. Because of the potential for large bill savings 
by modifying demand in just a small number of hours, 
such “peaky” load profiles can provide a compelling value 
proposition for batteries when the appropriate retail rate 
structures are in place, as we will see in section on Retail 
Case Study – Rooftop Solar With On-Site Battery below.

Despite the misalignment of shaping relative to the 
customer’s native demand profile, rooftop solar does 
provide significant value in this example by directly 
offsetting a good deal of mid-day energy consumption. 
Here, solar contributes more than a 35% reduction in 
the customer’s July electricity bill (see Figure 3 below). 
However, the consistent mid-day overgeneration leaves 
value on the table because FIT compensation is so much 
less than the customer’s retail energy rate.

Retail Case Study – Rooftop Solar 
With On-Site Battery

To understand how adding a battery could improve 
overall bill economics for the example customer 
introduced above we used an optimization model 
to compute optimal dispatch of an 800 kWh/200 kW 
battery system relative to the customer’s native hourly 
load profile, their hourly solar generation, and all the 
retail rate components described in Table 1. Sized this 
way, the battery could store just under 20% of the 
customer’s daily July energy usage and could discharge 
at roughly 2/3 of their peak demand. Figure 2 shows 
the resulting optimal charge and discharge pattern of 
the battery (solid light blue line) that minimized the 

customer’s total retail bill and the corresponding net 
demand purchased from the grid (solid yellow line). 
As seen in the figure, the battery’s operation virtually 
eliminated the export of energy back to the grid and 
significantly reduced the peak net demand. The result 
was a 25% reduction in the total July electricity bill 
compared to the case of rooftop solar alone (see Figure 
3).

In the example, the battery is able to derive value 
in three ways: by peak shaving to reduce demand 
charges, by reducing grid export to avoid economic 
losses from the low FIT, and by arbitraging the TOU 
schedule to capture the differential between on-peak 
and off-peak energy rates. This value is possible only 
because the retail rates compensate the battery 
for charging and discharging at very specific times. 
Combined with automation and optimization of the 
battery’s operation, the two prerequisites of successful 
DER rate design we proposed above, the retail rates 
actually shape the customer’s net demand. As a 
result, we see how application of a few simple and 
well-understood rate components can transform a 
customer’s grid-based energy usage (net demand) in a 
way that benefits both the customer and the utility (see 
Table 2).

It is important to note that the battery’s operation 
in our analysis is completely and automatically 
determined by the optimization model in response 
to the economic signals at play. Interactions between 
rate components can be highly complex, but an 
optimization model is designed to efficiently account 
for all these complexities when identifying the best 
outcome. Furthermore, the model guarantees that the 
outcome respects important constraints on battery 
operation, e.g., maximum charge/discharge rates, 
maximum energy storage capacity, etc. Such models 
will be key components of future utility rate design, as 

noted in prerequisite two above.
While the bill reductions shown in Figure 3 are 

striking, we do acknowledge several challenges with 
achieving such results in real-world applications. 
Technologies to automate battery operation in real-
time are still in development; these are needed to 
satisfy the first prerequisite for DER-centric rate design 
noted above. Additionally, uncertainty in customer 
demand and solar production make perfect real-time 

 

Figure 2. Optimal hourly battery operation relative to customer 
demand, solar generation, and retail rates including TOU, demand, 
and FIT components. The battery operates to avoid export of excess 
solar energy to the grid, reduce peak net demand, and arbitrage TOU 
schedules to the economic benefit of the customer, as seen by the 
solid yellow curve.

 

Figure 3. July electricity bill for a large commercial customer in 
California with only grid purchases (native bill), with rooftop solar, 
and with solar-plus-storage.



International Association for Energy Economics

p.8

optimization difficult to achieve, meaning actual battery 
operation may be suboptimal, providing less value to 
both the customer and the utility in practice than in 
theory. Finally, different customer load profiles will 
respond to the same rate structures in different ways, 
meaning there is no “one-size-fits-all” approach to rate 
specification. Further research and modeling is needed 
to better understand how retail rates can be designed 
to shape electricity consumption for individual 
customer sub-classes that share similar demand profile 
attributes. The above considerations notwithstanding, 
we believe there is great benefit to broadening current 
understanding of how batteries can respond to utility 
rate signals in an era of ever-increasing artificial 

intelligence and automation 

Conclusions

This analysis has shown how pairing a battery 
with rooftop solar can simultaneously accomplish 
several goals for both retail customers and utilities 
when battery operation is optimized to a relatively 
simple rate structure. Our case study analyzed the 
monthly electricity bill for a customer with on-site 
solar paying a basic two-level TOU energy rate plus 
demand charge in a jurisdiction without NEM. The cost-
minimizing optimization eliminated two-way power 
flows, mitigated solar “Duck Curve” effects, reduced 
evening ramp, and lowered peak demand. In this 
way, combination of a battery with dynamic retail rate 
structures aligned the customer’s economic incentives 
with the utility’s operational goals.

We stress the importance of automating a battery’s 
response to dynamic rate structures. This enables a 
customer to realize battery value without significant 
behavioral change. Furthermore, automation implies 
that the customer need not understand or even 
consider the complex analytics associated with 
optimizing battery operation. On the other hand, 
optimization modeling is important for utilities to 
understand before implementing next-generation 
rate design in a decentralized grid. Once a utility 
understands optimal battery operation relative to 

EFFECT OF BATTERY CUSTOMER BENEFIT UTILITY BENEFIT 
REDUCED PEAK NET 
DEMAND 

Reduced demand charges Reduced system peak, reduced 
system ramp 

REDUCED EXPORT TO 
GRID 

Increased value of rooftop solar 
generation 

Mitigation of “Duck Curve” effects, 
reduced two-way power flow on 
grid, reduced system ramp 

INCREASED OFF-PEAK 
CONSUMPTION 

Bill reduction due to TOU rate 
arbitrage 

Reduction in on-peak consumption, 
flatter system demand profile 

 

Table 2. The mutual benefits of batteries to both utilities and their customers.

various rate structures, it can develop programs that 
fully abstract the analytical details away from the 
customer, simplifying the path toward adoption. Such 
programs could include providing incentives for or the 
direct provision of customer-sited batteries with solar 
installations, while the utility retains operational control 
of the battery. In exchange, the utility and customer 
would share battery value through avoided supply 
costs and retail bill savings, respectively.

The illustrative case presented in this article is just 
one example of the value from solar-plus-storage along 
with new rate structures. In general, analytics should be 
customized to customers’ native demand profiles and 
a region’s renewable energy production characteristics, 

along with a variety of 
dynamic rate structures. 
Further research should focus 
on how batteries respond 
to other rate structures, 
how responses interact with 
different load profiles to 
incent a desired load pattern, 
and how program design 
could be accomplished.
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