
Optimizing Hospital Bed Utilization with Bonsai
and SimPy
This project demonstrates how to integrate SimPy discrete event simulations
with the Microsoft Bonsai deep reinforcement learning platform.

In this demo, we train a deep reinforcement learning system to optimize utiliza-
tion of hospital beds with random patient arrivals.

Quickstart / Setup Guide
Installation Requirements

• Access to a Bonsai workspace (see Microsoft account setup for Bonsai),
including workspace ID and access key

• Python 3.7+

• Python dependencies, including the Bonsai API (see requirements.txt for
details)

Note: installing the Python dependencies in a virtual environment or Docker
container is strongly recommended.

The following dependencies are optional but recommended:

• Azure CLI
• Bonsai CLI
• Docker

Running the Simulator Locally

1. Clone the project repository to your local machine.
2. Create a new .env file in the root of the project folder, and add your

workspace credentials. See template.env for an example.
3. Build a local Docker container with docker build -t hospital .
4. Run the local Docker container with docker run --env-file .env

hospital

You can now create and train a new brain on the Bonsai platform using the
locally running simulator.

Building the Simulator Image

Unmanaged simulators can only run a single simulation instance for brain train-
ing. To scale up the simulator, we will need to push the Docker container to
Azure Container Registry (ACR). (Creating a Bonsai workspace automatically
provisions an associated ACR instance.)

First log into ACR with

1

https://simpy.readthedocs.io/en/latest/
https://docs.microsoft.com/en-us/bonsai/product/
https://docs.microsoft.com/en-us/bonsai/guides/account-setup
https://docs.microsoft.com/en-us/bonsai/cookbook/get-workspace-info
https://docs.microsoft.com/en-us/bonsai/cookbook/get-access-key
https://github.com/microsoft/microsoft-bonsai-api
./requirements.txt
https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/bonsai/cli/
https://docs.docker.com/desktop/
./template.env

az acr login --name $RegistryName

Next, build the image on ACR with the Dockerfile.

az acr build \
--image $ImageName \
--registry $RegistryName \
--file Dockerfile .

Finally, create a new simulator package in the Bonsai workspace.

bonsai simulator package container create \
--name $SimulatorName \
--image-uri "$RegistryName.azurecr.io/$ImageName" \
--max-instance-count 25 \
--cores-per-instance 1 \
--memory-in-gb-per-instance 1 \
--os-type Linux

Here

• $RegistryName is the name of your ACR instance,
• $ImageName is the name and tag of your container image, e.g. hospital:v1,

and
• $SimulatorName is the name of your simulator in the Bonsai workspace,

e.g. Hospital.

Note: On PowerShell, replace the backslashes (“\”) with backticks (“‘”).

Brain Training

Now that the simulator is connected to the Bonsai platform, we can use it to
train a brain. First, create a new brain in the Bonsai workspace.

Next, upload the Inkling file hospital.ink to the Bonsai workspace, and start a
brain training session. It takes around 30 minutes to train both lessons (see
“Brain Design”, below) to 100% goal satisfaction.

Brain Design
There are 2 configuration parameters:

• the initial number of patients (0 by default), and
• the initial number of beds (200 by default).

The simulation keeps track of the following states:

• the simulation time (useful for plots and debugging),
• the number of beds in a given day,
• the number of patients in a given day,
• the number of patients turned away because no beds were available, and

2

https://docs.microsoft.com/en-us/bonsai/inkling/basics
./simpy_demo/hospital.ink

• the utilization (the ratio of patients to beds).

The only possible action the brain can take is to change the number of beds.

Utilization and Queue Theory

Modeling hospital capacity has important applications for policy and resourcing
decisions - too few beds, and the hospital may not have capacity to serve an
unexpected surge in patient arrivals; too many beds, and the resources are
wasted.

One of the fundamental results of queueing theory is that the customer (i.e. pa-
tient) wait time goes to infinity as the utilization approaches 100% (see, for
example, M/M/c queue).

Government regulations and hospital policies have historically set utilization
targets at 85%, although more recent research has challenged this assumption.
See Ref. 1 for a good overview.

Lesson Design

For our purposes, it is sufficient to choose a (somewhat arbitrary) target utiliza-
tion and instruct the brain to keep the utilization within that range.

The first lesson (StaticStart) sets the initial number of beds at 200, and the
brain learns to keep the utilization between 0.7 and 0.9. The within 14 clause
requires the brain to reach the target utilization within 14 days for the training
episode to be considered successful.

The second lesson (RandomizeStart) generalizes to between 200 and 300 beds
in increments of 20.

Training episodes run for 2 years.

Simulation Details
Each day a random number of patients arrive, where the arrival events are
governed by a Poisson distribution, which is equivalent to modeling the inter-
arrival times with an exponential distribution.

Testing the Simulation

Let’s use some simple control logic to test the simulation (see demo_sim.py):

• if the utilization is above 0.9, then add 25 beds;
• if the utilization is below 0.7, then remove 10 beds;
• otherwise, keep the beds as they are.

Running the simulation for 60 days with 200 beds and no patients (simulating
a newly built hospital or wing) yields the following plot.

3

https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/M/M/c_queue
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
./simpy_demo/demo_sim.py

simulation test

It takes around 2 weeks to reach a stable state, with a few days of overflow
near the beginning. After the initial ramp-up, the simple control logic works
reasonably well, although it tends to overshoot the utilization targets before the
logic kicks in.

References
[1] Green, Linda V. “How Many Hospital Beds?” INQUIRY: The Journal of
Health Care Organization, Provision, and Financing, (November 2002), 400–412.
https://doi.org/10.5034/inquiryjrnl_39.4.400.

Contributing
This project follows Microsoft’s Open Source Code of Conduct.

Pull requests and suggestions are welcome. Prior to submitting a pull request,
please auto-format your code with Black and lint with Pylint.

The pandas contributing guidelines are a great resource for preparing and sub-
mitting code.

Acknowledgments
The SimPy simulation in this demo is heavily inspired by Michael Allen’s learn-
inghospital project.

The Bonsai simulation interface code, especially main.py and interface.json, is
modeled after the cartpole, plastic-extrusion, and simple-adder examples
in the Bonsai API.

Many thanks to the following people for helpful comments and suggestions
throughout the development of this demo:

• Doc Derwin (Neal Analytics)
• Chris Kahrs (Microsoft)
• Zach Perkel (Neal Analytics)
• Jayson Stemmler (Neal Analytics)
• Edwin Webster (Neal Analytics)

4

https://doi.org/10.5034/inquiryjrnl_39.4.400
https://opensource.microsoft.com/codeofconduct
https://github.com/psf/black
https://www.pylint.org/
https://pandas.pydata.org/pandas-docs/stable/development/contributing.html
https://github.com/MichaelAllen1966/learninghospital/blob/master/simpy_envs/env_simple_hospital_bed_1.py
https://github.com/MichaelAllen1966/learninghospital/blob/master/simpy_envs/env_simple_hospital_bed_1.py
./simpy_demo/main.py
./simpy_demo/interface.json
https://github.com/microsoft/microsoft-bonsai-api

	Optimizing Hospital Bed Utilization with Bonsai and SimPy
	Quickstart / Setup Guide
	Installation Requirements
	Running the Simulator Locally
	Building the Simulator Image
	Brain Training

	Brain Design
	Utilization and Queue Theory
	Lesson Design

	Simulation Details
	Testing the Simulation

	References
	Contributing
	Acknowledgments

