
Whitepaper

Platform Architecture
Overview

www.ondat.ioBuild Better Faster

Contents

Introduction	 3

About Ondat	 3

Deployment	 3

Inside the Ondat container	

The Control Plane	 4

The Data Plane	 4

How Ondat works	 4

Provisioning storage	 5

Features	

Replication for high availability	 5

Encryption at rest	 6

Policy management	 7

Rapid failover (fencing)	 7

Management	 8

Conclusion: Ondat Self Evaluation Guide	 8

www.ondat.io2

www.ondat.io 3

3

Introduction
Cloud native is fast becoming the de-facto standard
in IT development as businesses seek to innovate
quickly. That means deploying apps anywhere in
seconds, helping to improve time to market and
ensuring a great end-user app experience. This
new cloud native world sees adoption of containers
and orchestrators to achieve many business and
technology outcomes. During the cloud native journey,
organizations will soon realize that they want to move
stateful workloads to their new environments.

While containers provide well understood advantages
over both physical and virtual machines, they are
ephemeral filesystems that do not persist to disk.

To run applications which require persist storage within
containers, we require a layer which can provide persistent
disk storage to those containers, independent of the
lifecycle of the containers themselves.

This paper is an architecture overview of how Ondat
delivers a software-defined, cloud native storage solution.

About Ondat
Ondat is a software-defined, cloud native storage
solution. We give you total control of your storage
environment – whether on-premises or in the cloud. We
deliver persistent storage to applications in containerized
environments, helping you achieve all of the business
benefits of this technology.

Our software is built for developers and highly
performant allowing you to break lock-in, improve agility
and respond to change quickly.

With Ondat, you can expect to save on infrastructure costs
because you’ll turn commodity hardware into enterprise
grade storage. Your engineers will love that they can self-
provision storage without waiting months for other teams.
This all allows you to respond to business change quickly.

Deployment
Based on the principles of cloud native, Ondat ships as
a container. Our software is deployed as a DaemonSet
across your Kubernetes nodes, orchestrated by our
operator. Ondat is designed to be simple to install –
requiring only a few commands to achieve a working
cluster.

Immutable

Contain all dependencies

Easy to deploy

Managed by an orchestrator

Less deterministic

Better resource utilization

Managed by configuration
management

Container Container Container
APP APP APP

Physical Machine

Virtual Machine

Physical Machine

APP

APP

Physical Machine/Cloud

Deterministic
Poor resource utilization

Managed by configuration
management

Inside the Ondat container
Ondat consists of two fundamental components - an intelligent control plane and data plane.

The Control Plane

The Ondat control plane orchestrates cluster operations
such as volume placement, and reacts to node failure,
dynamically promoting volume replicas and moving
mountpoints as appropriate.

We use an external etcd cluster to store state and manage
distributed consensus. To complement this, a gossip
protocol is established between all the nodes to monitor
cluster health.

How Ondat works
Ondat aggregates storage across all nodes in a cluster
into a pool. It allows volumes to be provisioned from the
pool and for containers to mount those volumes from
anywhere in the cluster. Ondat transparently redirects
reads and writes to the appropriate volume, so the
container is unaware of whether it is accessing local
storage or remote storage. Volumes are thin provisioned
to avoid consuming disk space unnecessarily.

Ondat features are all enabled/disabled by applying
labels to volumes. Labels can be passed to Ondat via
PersistentVolumeClaims (PVCs) or can be applied to
volumes using the Ondat CLI or GUI.

The Data Plane

The data plane is our end-to-end block storage
implementation. Utilizing a patented on-disk format,
the data plane stores user volume data in BLOB files on
hosting nodes. The data plane is written in fast C++ and is
the only layer through which user volume data travels. We
apply various transforms to data before committing to
disk, including encryption and compression, using the LZ4
algorithm. These transforms are controllable on a per-
volume basis.

Ondat compression is enabled by default. Performance is
generally increased when compression is enabled due to
fewer read/write operations taking place on the host disks.

www.ondat.io4

Control Plane
Intelligent

Orchestrates cluster operation
and dynamic provisioning

Disaggregated consensus

Volume placement and storage aware locality

Manage cluster health

Data Plane
Performant storage engine

Hot path for all data

Thin provisioning

Replication

Compression

Encryption

VolumeContainer Node

PO
O

L
PO

O
L

Provisioning storage
Users can provision and manage a volume with standard
Kubernetes semantics via a Kubernetes PVC. It is a secure
native Kubernetes integration where:

•	 Namespaces segregate the scope of control aligned
to K8S namespaces.

•	 Kubernetes RBAC manages permissions to
namespaces and volumes.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: my-vol-1

 annotations:

 volume.beta.kubernetes.io/storage-class: fast

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

apiVersion: v1

 kind: Pod

 metadata:

 name: d1

 spec:

 containers:

 - name: debian

 image: debian:9-slim

 command: [“/bin/sleep”]

 args: [“3600”]

 volumeMounts:

 - mountPath: /mnt

 name: v1

 volumes:

 - name: v1

 persistentVolumeClaim:

 claimName: my-vol-1

Applications create a Ondat volume through the PVC
specifying size. Volumes are dynamically provisioned
instantly, and mountable on any node immediately,
without having to detach and reattach physical volumes.

Provisioning storage directly to the application (rather
than the operating system) allows storage to be declared
and composed as part of application instantiation through
Kubernetes. This enables developers to deploy and
provision storage resources and services alongside CPU,
networking and other application resource.

Features
Replication for high availability

Replication is the process by which one or more replica
volumes can be kept in sync with a single master volume.
High availability refers to the ability to switch between
the master and replicas at will, so if the master is suddenly
unavailable (for whatever reason), a replica can be
promoted to master. This is essential for any organization
wanting to run stateful applications in containers. Without
it, the business risks data loss or downtime.

Wih replication disabled, a Ondat volume saves data to a
single node in a cluster. When a node fails, access to the
Ondat volume is suspended for the duration of the node
failure, thus causing outage for the application using the
volume.

When enabled, under node failure condition, Ondat
volume replication will transparently promote a replica
node to master. Mount endpoints migrate to the new
master, and applications continue without requiring
maintenance or downtime. From the perspective of the
application, the only visible effect is a small pause in IO
while the failover takes place.

This allows applications backed by Ondat volumes to be
turned into HA applications without extra development
work or application refactoring.

www.ondat.io 5

PO
O

L

5/6. 	 If a node fails, a replica is automatically promoted to become a new master and another replica is
provisioned on an available node. Volume mount points move transparently to the application.

P

How replication for HA works

Ondat protects data from a disk or node failure and ensures a strong consistency model.
 Replication is synchronous between a primary volume and user defined number of replicas (up to 5).

1. 	 Data is sent to the primary first and then sent in parallel to all the replicas.
2. 	 Then sent in parallel to all the replicas.

Encryption at rest

To prevent bad actors from viewing data offline e.g. by
stealing disks, etc., Ondat includes encryption of data at rest,
using keys that only you hold access to. This is an important
distinction between encryption of Ondat volumes and
encryption of devices offered by cloud providers.

Ondat encrypts data at rest using AES-256 in XTS-AES mode
with 512 bit keys as recommended by NIST. Usage of XTS-
AES encryption enables the use of the AES-NI instruction set
when available to minimize the CPU overhead and latency of
encrypting volumes. The keys and initialization vectors used
to encrypt volumes are generated using the crypto/rand
package. Each volume is encrypted with a unique 512bit key.

Ondat has no access to, nor means to recover these keys
allowing you to make iron clad guarantees about who has
access to your encryption keys. This also means that data
can effectively be destroyed by deleting the volumes’
encryption keys.

Encryption keys are stored as Kubernetes secrets.
For increased security, we recommend the usage of a
Kubernetes KMS plugin to protect the secrets using the
envelope encryption scheme of a KMS provider.

P

1

PO
O

L Click here to read the
documentation on
replication for HA

Click here to read more about
how Ondat encryption works.

www.ondat.io6

2

R

R

R

P

3/4. 	 All acks need to be received by the primary and the write needs to be acknowledged to the application.

4

PO
O

L

3 R R

R

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://en.wikipedia.org/wiki/AES_instruction_set
https://godoc.org/crypto/rand
https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/
https://docs.storageos.com/docs/concepts/replication
https://docs.storageos.com/docs/operations/encrypted-volumes

GUI - Visualize the storage environment for ease of use

Policy management

Ondat policy management enables compliance
with corporate policy (e.g. replica count, encryption,
compression) while retaining developer agility.
Ondat rules control features based on volume labels/
namespaces. To grant a user or group access to a
namespace, a policy needs to be created mapping the
user or group to the namespace. Policies control access
to Ondat namespaces. Policies can be configured at the
group or user level so access can be controlled granularly.

Users can belong to one or more groups to control their
namespace permissions. Additionally, user specific
policies can be created to grant a user access to a
namespace. Users can belong to any number of groups
and have any number of user level policies configured.

Rapid failover (fencing)

The Kubernetes StatefulSet controller is the standard
controller for running stateful workloads on Kubernetes.
It provides volume templating, strong guarantees about
pod creation order, and enforces serialization of mounts
and unmounts such that a given volume can never be
mounted twice.

To provide these guarantees, the StatefulSet controller
is highly conservative with respect to restarting pods
– specifically it tries hard to ensure that a given pod is
completely dead with its volume unmounted before
scheduling a replacement. Manual intervention is normally
required before a StatefulSet will failover to another node.

When enabled for a volume, Rapid Failover will use Ondat
awareness of node health to influence StatefulSet pod
failover.

When enabled for a volume, Rapid Failover will use Ondat
awareness of node health to influence StatefulSet pod
failover.

For certain workloads this provides faster failover
behaviour than the StatefulSet controller alone.

PO
O

L
PO

O
L

P

P R

Click here to read the documentation
on Rapid failover (fencing)

Click here to read the documentation
on Policy management

CLI - Open source to manage cluster-wide configuration

www.ondat.io 7

R R

https://docs.storageos.com/docs/concepts/fencing
https://docs.storageos.com/docs/operations/policies

TYPE storageos_volume_frontend_read_bytes_
total counter

storageos_volume_frontend_read_bytes_total{na
mespace=”mysql”,pool=”default”,type=”presenta
tion”,volume_id=”48459472-80a5-96ee-9a5d-
486319ccc5bd”,volume_name=”prod-mysql-0”}
1.077248e+06

storageos_volume_frontend_read_bytes_total{na
mespace=”mysql”,pool=”default”,type=”presenta
tion”,volume_id=”a1ddf1bb-dda3-5ab5-bda7-
cfea0e9c7ccb”,volume_name=”dev-mysql-0”}
1.077248e+06

Management

Ondat management features include:

•	 Ondat can be managed through a Command Line
Interface (CLI) to manage cluster-wide configuration.
Docs: Installation and Usage

•	 Ondat provides a GUI for cluster and volume
management. The GUI is available at port 5705 on
any of the nodes in the cluster. Docs: Login and
managing cluster nodes and pods

•	 Prometheus endpoints expose metrics about Ondat
artefacts (such as volumes), as well as internal Ondat
components. Customers may scrape these metrics
using Prometheus itself, or any compatible client, such
as the popular Telegraf agent shipped with InfluxDB.
Docs: Metrics

Get started today with Ondat
Visit us at www.ondat.io or email us at info@ondat.io

www.ondat.io

https://docs.storageos.com/docs/reference/cli/
https://docs.storageos.com/docs/reference/gui
https://docs.storageos.com/docs/reference/gui
https://prometheus.io/
https://www.influxdata.com/time-series-platform/telegraf/
https://docs.storageos.com/docs/reference/prometheus

