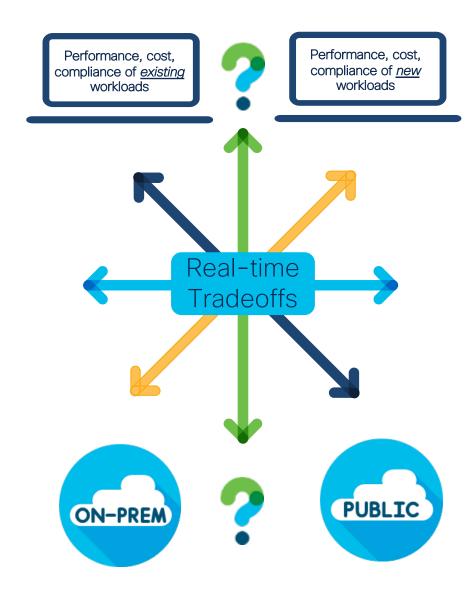


Updated August 2019

Cisco Workload Optimization Manager

Workload optimization and automation for multicloud environments

Speaker name Speaker title

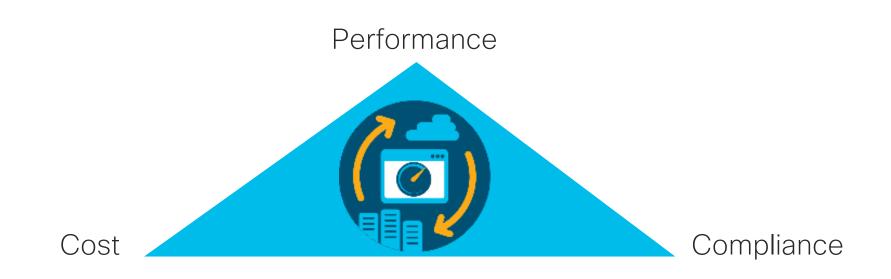

Agenda

- What is Cisco Workload Optimization Manager?
- Customer benefits
- How it works
- Integrations with broader Cisco Multicloud portfolio
- Cisco IT success story
- Appendix: Complementary capabilities in VMware environments

Workload assurance and optimization is a complex problem

- Workload deployments will continue to increase in volume and frequency.
- Multi-cloud environments expand workload placement options, increasing cost overruns and compliance risks.
- Tradeoffs must be made in real time to keep pace with the business.

Decision automation is required



Simultaneously assuring workload performance and compliance while maximizing utilization

The Desired State

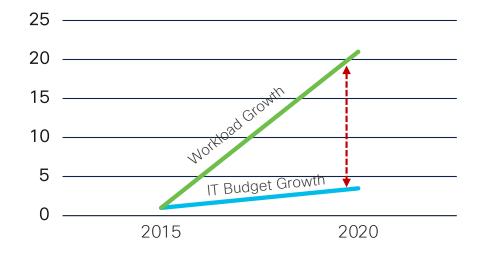
CCWOM: Driving Toward the Desired State

Always solving for, simultaneously:

- 1. Better Performance
- 2. Increased Compliance
- 3. Lower Costs

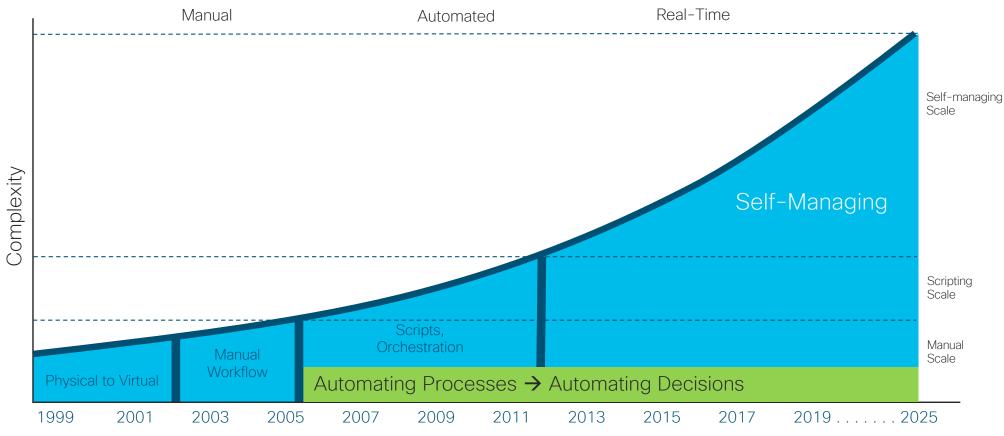
What is Cisco Workload Optimization Manager?

A decision engine for hybrid cloud environments



- Software that continuously analyzes workload consumption, costs, and compliance constraints and automatically allocates resources in real-time, on-premises and in the cloud.
- It assures workload performance by giving workloads the resources they need when they need them.

Performance is Critical, but Budgets are Flat



- Workloads grow but hardware spend doesn't
- IT fights to keep head above water

How do you assure performance?

Evolution of Automation

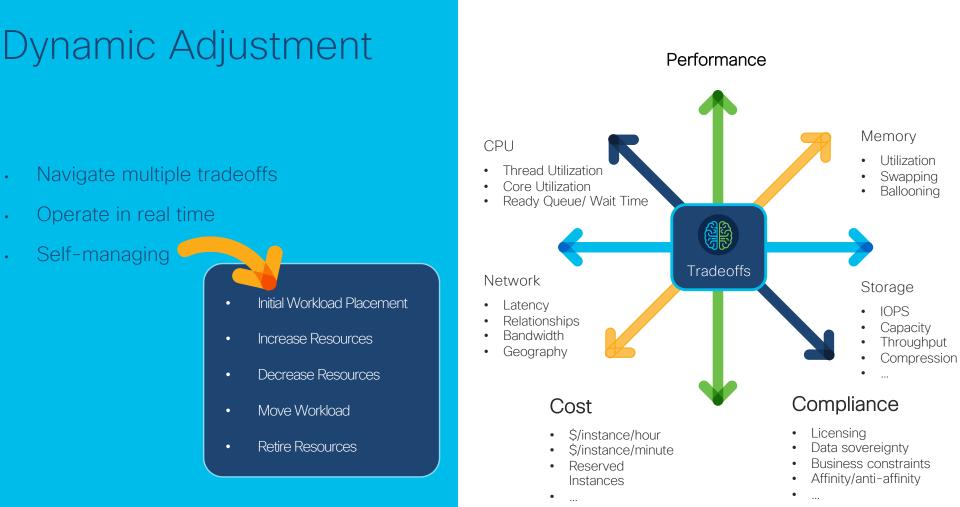


^{© 2019} Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

Process Automation versus Decision Automation

Process

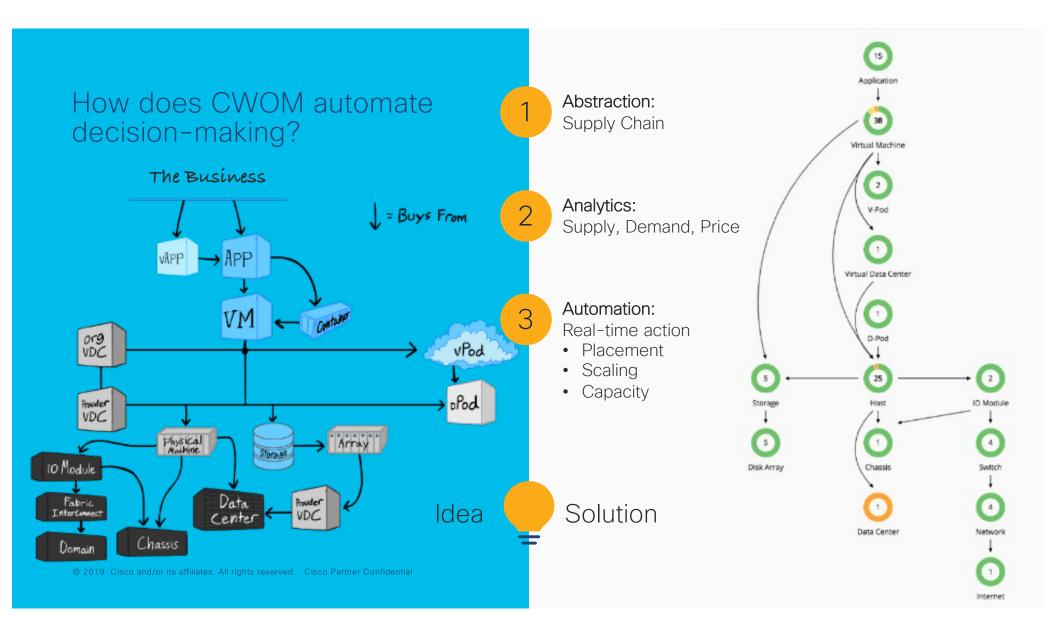
- Problems typically addressed after alerting—reactive
- Labor intensive
- More data = more noise

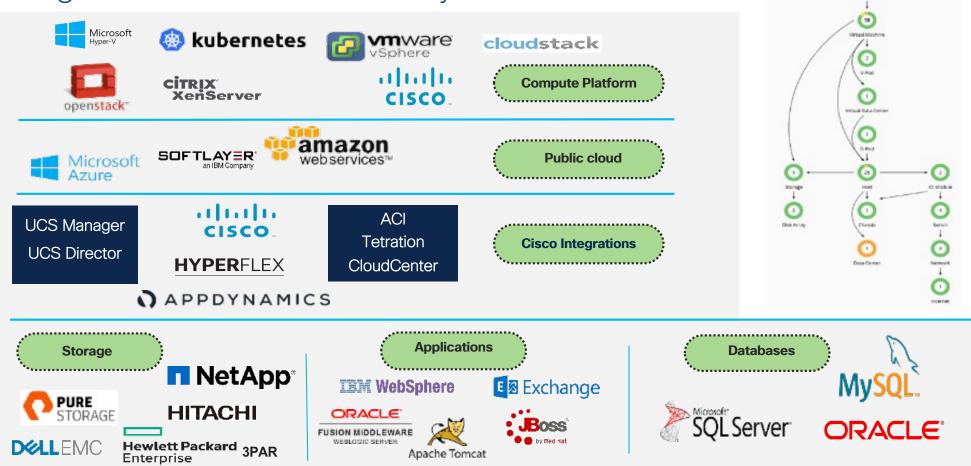


© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

Decision

- Problems typically addressed before alerting—preventative
- Little to no human intervention
- More data = better decisions




© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

•

•

Cisco Workload Optimization Manager Integrations with broad ecosystem

(15)

Cisco Workload Optimization Manager Integrations Delivering value across the stack and into the cloud

Application-Aware Infrastructure

Drive better optimization through the infrastructure with AppDynamics metrics.

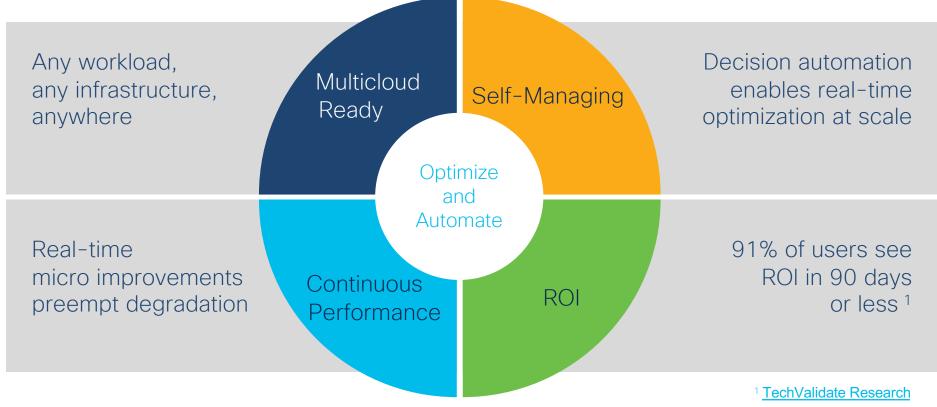
Self-Managing Container Platforms

Accelerate cloud native projects with production-scale Kubernetes, OpenShift & Cloud Foundry.

Multicloud Deployment

Deploy workloads with Cisco Cloud Center, optimized for performance, cost, & compliance with Cisco Workload Optimization Manager.

Cloud Elasticity On-Prem Safely maximize cloud elasticity in Cisco HyperFlex & UCS environments. Super Cluster Optimization Extend the hypervisor platform and maximize virtualization and Cisco Hyperflex investments.


Multicloud Dynamic Optimization

Optimize performance, cost, & compliance in the data center or public cloud (AWS and Azure) with one platform.

Network-Aware Optimization

Reduce latency by dynamically localizing "chatty" workloads with Tetration Analytics

Cisco Workload Optimization Manager Ensure continuous application performance

Proven Business Outcomes

Better application response time.¹

Increase utilization by 20% or more.²

- 1. <u>Principled Technologies Report</u>
- 2. TechValidate Research
- 3. TechValidate Research
- 1. TechValidate ResearchechValidate Research
- 91% See ROI within 90 days or less.⁴

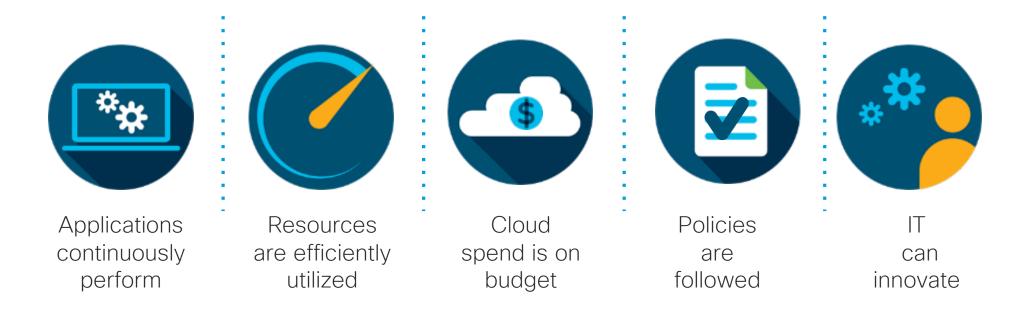
- Performance
- Efficiency
- Compliance

Let's Get Started

- 30-minute install through VM & single OVA file
- Improvement actions appear within 1 hour
- Agentless

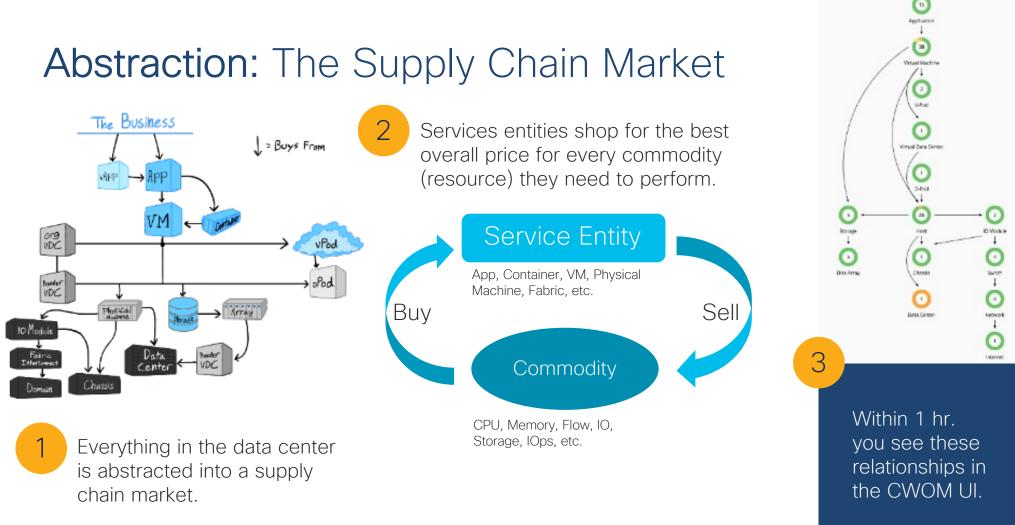
What to Expect

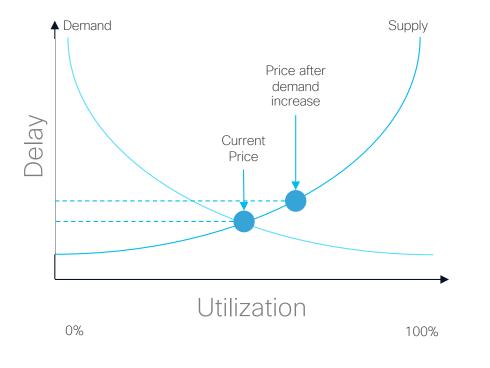
Continuous Optimization Real-time actions drive continuous performance, efficiency, and compliance.


Capacity Management

Quickly & accurately model what-if scenarios: workload growth, add/remove hardware, cloud costs

Compliance & Business Policies Easy custom policies ensure CWOM actions abide by business and compliance requirements.


When application workloads get the resources they need, when they need them . . .


How does CCWOM work?

(How do you automate decisions?)

- Abstraction
- Analysis
- Automation

Analysis: Economic Supply, Demand, and Price

- Utilization (demand/supply) determines price.
- Workloads/service entities make scaling, placement, and capacity decisions based on *all* the resources they need.

Automation: Real-time Action

Continuous Optimization

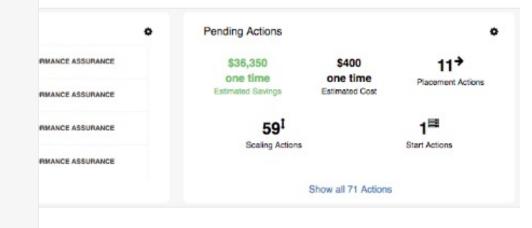
Real-time actions drive continuous health:

- Placement
- Sizing
- Provisioning

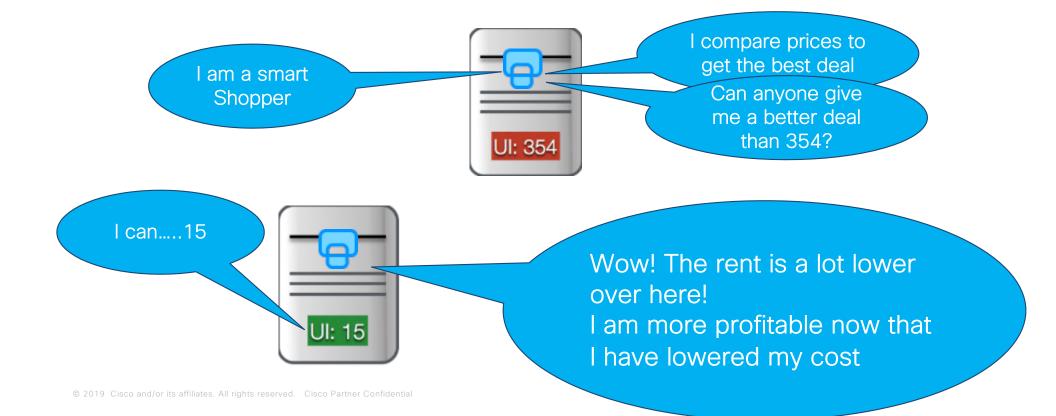
Capacity Management

Quickly & accurately model what-if scenarios:

- Workload growth
- Add/remove hardware
- Cloud costs


Automation: An Action, Examined

What is the logic behind an action?


Automation: Why Move?

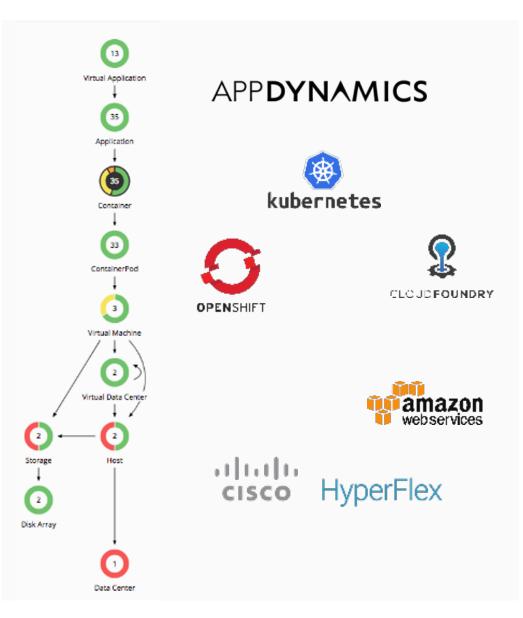
~

	Move VM to Host Student8IMC200		PERPORMANCE ASSURANCE
	Move Virtual Machine 'Student8IMC200' from Host 'm4-esx4.ednivt.elsee.com' to Host 'm4- esx1.ednivt.elsee.com', to improve workload distribution		
		Student8IMC200	
Panding Actions		VIRTUAL MACHINE	
Pending Actions	0.2 %	0%	2 %
Move VM to Host Student8IMC200	1.9 TB STORAGE AMOUNT	81.9 Gb/s	486.6 GB
Move VM to Host Student14JMP7VNX	0.6 % → 0.6 %	0 %	1 %
Move VM to Host Student34JMP7VNX	9.2 GHz VIRTUAL CPU	127.9 GB BALLOONING	0.9 THz CPU PROVISIONED
Move VM to Host	0 %	O %	0 %
Student2JMP7VNX	5,000.0 IOPS	164.8 GHz	167.8 Gb/s
	STOPAGE ADCERS	CPU ALLOCATION	IO THROUGHPUT
	0%	1 - 0	0 %
	100 msec	PRODUCES	40 Mia/s
	STORAGE LATENCY		SWAPPING
	25%	7.4 %	0.9 %
	3.9 TB	127.9 GB	1.2 TB
	STORAGE PROVISIONED	MEMORY	MEMORY PROVISIONED
	0.2 %	2.6 % - 2.8 %	0 %
	20 sec	12 GB → 11 GB	91.8 GHz

Entities in Cisco CWOM are Smart Shoppers

Entity Behavior

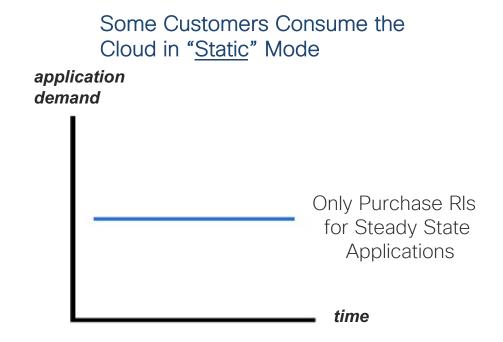
- Entities in CWOM behave according to few simple heuristics
 - Shop around for resources, buy (move to) at the lowest price
 - Evaluate my ROI (Revenue Expenses) and act accordingly
 - At Equilibrium hold
 - Very profitable expand my business
 - Unprofitable contract my business
- An entity does not know (and does not need to know) the whole supply chain, just the current prices offered by all eligible providers

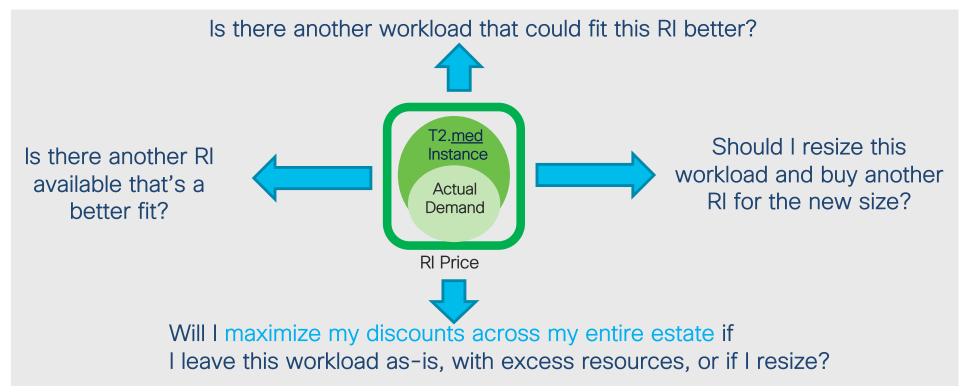

Basket of Goods

- An entity buys a basket of goods from a provider
 - Example: A VM buys CPU, Mem, ReadyQueue, Ballooning, Swapping, and many other commodities from PMs
- The price charged by the provider is a function of the utilization of every commodity in the basket
 - Higher Utilization \rightarrow Higher Price
 - Because of the way pricing works, the most utilized resource has the biggest effect on the overall price

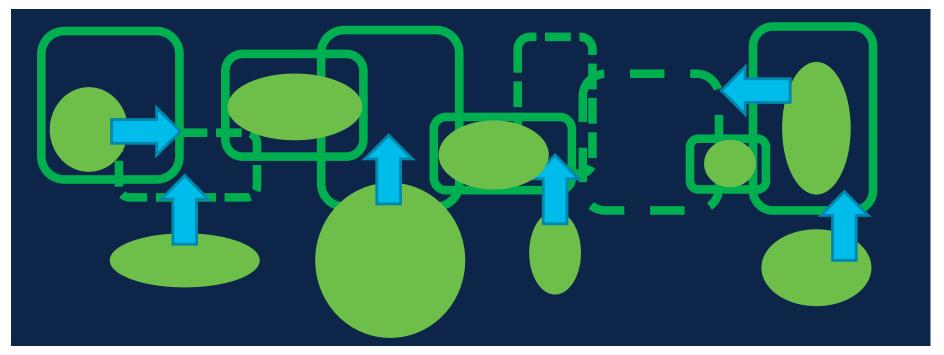
CCWOM 2.2 Highlights

- True application-aware infrastructure
- Dynamic optimization on HCI– super clusters!
- Self-managing container platforms
- New public cloud savings with continuous optimization of AWS Rls




Cloud Customers Tell Us They are Struggling to Balance Elasticity and RI Savings

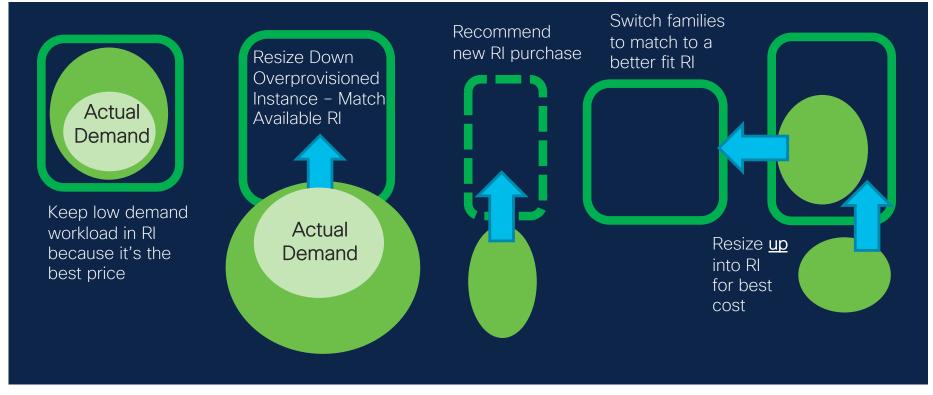
Some Customers try to be "<u>Elastic</u>" with People and Spreadsheets



Correct sizing and coordinating with RIs is incredibly complex for even one instance Example: AWS Instance is Over-Provisioned

Manually Driving the Maximum Cost Savings from RIs – at Scale – Simply isn't Possible

Our customers report fluctuating workload demand that they are unable to optimally match to existing – or future – RI purchases


New in Cisco CWOM 2.2 Continuous optimization of AWS RI consumption – in concert with resizing automation

The Cisco CWOM Decision Engine uses one "brain" to holistically:

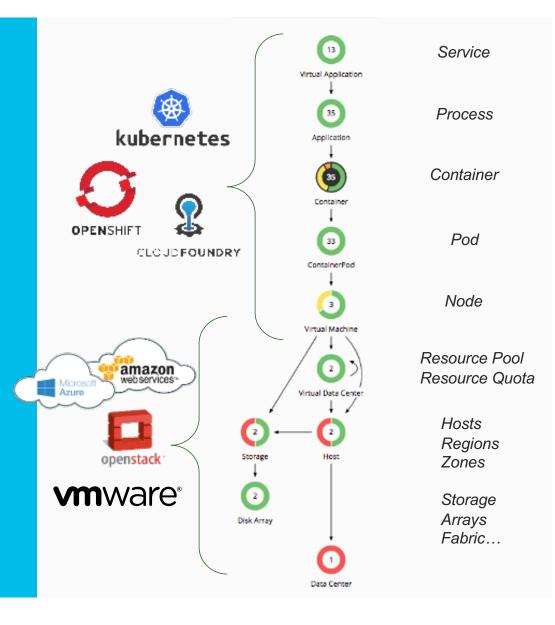
- 1. Look at what RIs are available
- 2. Look at the workloads and their demands
- 3. Decide and action "best fit at best cost" for all workloads
- Resize up or down
- Maximize use of available RIs
- Recommend new RI purchases

Result: Continuously Maximizes RI Savings Across the Entire AWS Estate

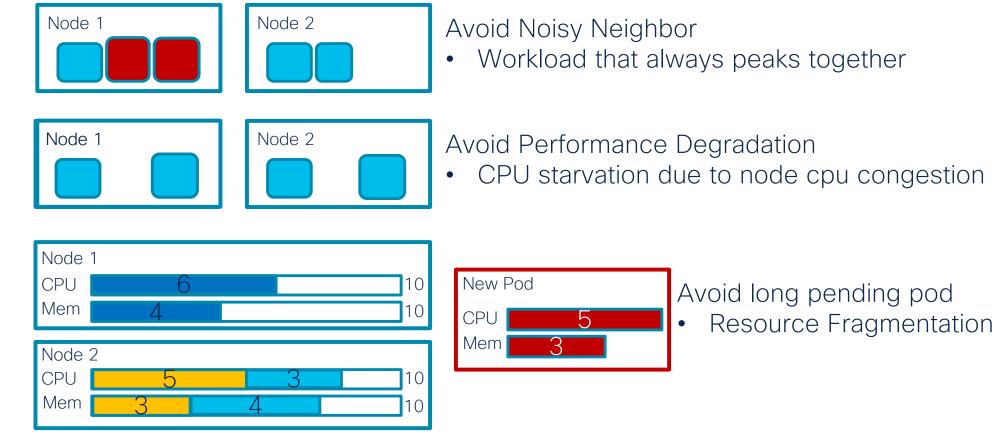
New Cisco CWOM 2.2 Example: Cisco CWOM decisions that are coordinated across the estate to maximize AWS savings

Container Projects Underway and Growing Rapidly Management challenges, resource contention, cost overruns are right behind

CCWOM now optimizes and automates container platforms



Self-Managing Container Platforms


Self-managing workloads optimize container platforms so IT organizations can scale and accelerate cloud native strategies.

Results:

- Minimal human intervention no thresholds to set!
- Automated rescheduling of pods assures performance
- Intelligent cluster scaling ensures elastic infrastructure
- Full-stack control unites DevOps and Infrastructure

The Need for Continuous Placement: Pod Rescheduling

General 2.x Platform Enhancements

CCWOM 2.0 introduces an enhanced decision engine which will provide the following benefits:

- Greater speed in Real-Time Operations and Decisions
- Significantly faster run-time for environment modeling, simulations via plans
- CPU Capacity support: now understands differences between different generations of CPU architectures for more accurate planning and recommendations

Industry Standard SPEC CPU Benchmark

CCWOM 2.0 understands the differences between CPU generations/architectures

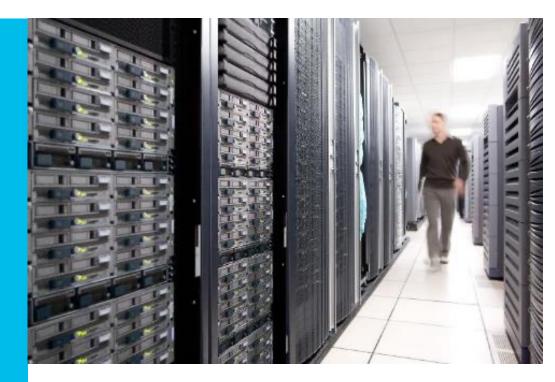
Vendors publish metrics

CCWOM gets periodic updates

n	C	E.	F		н	And Andrews	T.
1 Hardware Vendor		# Chips	 If Cores Per Chip 		Processor	 Processor MHz =+ 	Baseline 👻
126 Col Inc.	Powert dge 8710 (Intel Xeon X5567, 3.50 GHz)		1	4	Intel Keon X5637	3500	45.1
327 Del Inc.	PowerEdge T130 (Intel Xeon E3 1270 v5, 3.60 GHz)		1	4	Intel Xeon E3 1270 v5	3600	72.7
128 Del Inc.	ProverEdge TEBD (Intel Keon F3-1220 v5, 3.60 GHz)		1	-4	Intel Xeon F3-1220 v5	3600	69.9
see the res	Powertcige 1610 (Intel Reon 85687, 3.60 GHz)		1	4	Intel Reon A5687	3500	43.1
330 Del Inc.	PowerEdge T710 (Intel Xeon X9687, 3.60 GHz)		2	4	Intel Xean X5687	3500	45.1
111 Hewlett Record Inh	er Prol lant MI3D Gen9 (3.00 GHz, Intel Xeon C3-1270 v5)		1	-4	Intel Keon 13-1220 v5	3500	73.7
BI Dato Systems	Ciaco UCS 8200 MB (Intel Xeon 65-3637 v2, 3.50 SHz)		1	4	Intel Keon 65-2687 v2	3500	51
BB Clisco Systems	Cisco UCS 8200 M3 (Intel Xeon E5-2643 v2, 3.50 SHz)		2	6	Intel Xeon ES-2648 v2	3500	57.5
114 Claim Systems	Osco UCS 0200 MM (Intel Neor ES-2632 v3 @ 3.50011z)		2	4	intel Keon 15-2017 v1	3500	61.2
135 Giaco Systems	Giaco UCS 8200 M4 (Intel Xeon E5-2637 v4, 3.50 SHz)		2	4	Intel Xeon E5-2637 v4	3500	65.1
136 Cisco Systems	Cisco UCS C220 M3 (Intel Xeon E3 2643 v2, 3.30 SHz)		2	6	Intel Xeon ES-2648 v2	3500	57.A
Tisco Systems	Cisco UCS C220 M4 (Intel Xeon E5-2637		2	4	Intel Xeon E5-2637 v3	3500	61.1
na Cisco Systema	Cisco UCS C220 M4 (Intel Xeon E5-2637		2	4	Intel Xeon E5-2637 v4	3500	65.1
130 Dam Systems	Dam UCS C240 MG (Intel Xeon E5-3K37 v2, 3.50 GHz)	2 0	2	-4	Intel Keon 15-2037 v2	3500	52.2
40 Cisco Systems	Gisco UCS C240 M3 M3 (Intel Xeen 55-2648 v2, 5:50 GHz)		2	é	Intel Xeon E5-2648 v2	3500	57.6
41 Cisco Systems	Cisco UCS C240 MM (Intel Xeon ES-2637 v3 @ 3-706Hz)		2	4	Intel Xeon ES-2637 v3	3500	60.7
142 Data Systems	Class LCS C240 M4 (Intel Xeon E5-3K37 v4 3.50 CHz)		1	4	Intel Reon 15-2637 v4	3500	64.9
48 Del Inc.	Dell Precision R5400 (Intel X5270, 8.50 GHz)		2	2	Intel Xeon X5270	3500	22.4
Hit Del Inc.	Dell Precision R5400 (Intel Xeon X5270, 3.50 SHz)		2	7	Intel Keon 35220	3500	26.3
M5 Del Inc.	Cell Precision 13610 (Intel Xeon ES-1650 vJ, 3 50 GHz)	-	1	ċ	Intel Reon E5-1650 v2	3500	52.7
46 Del Inc.	PowerEdge 1950 III IIntel Xoon X5270, 8,50 GHz)		2	2	Intel Xeon X5270	3500	26.5
M7 Del Inc.	PowerEdge 2900 III (Intel Xeon X5270, 3.50 GHz)	5	2	2	Intel Keon X5220	3500	
HE Del Inc.	PowerEdge 2950 III (Intel Xeon X5270, 5.50 EHz)		1	2	Intel Raion X5270	3500	26.5
349 Del Inc.	PowerEdge F0630 (Intel Xoon E5-2687 v4, 3.50 GHz)		2	4	Intel Xeon E5-2637 v4	3500	65
ISO Del Inc.	ProverEdge M000 (Intel Xeon X5270, 1.50 GHz)		3	2	intel Keon 85270	3500	20.5

How to enable CPU Capacity

		Select Processor			×
CPU Oselect from Catalog		Q, Intel Xoon Gold 614			E ALTER
		Imcl Xeon Gold 9140	18 Dores	2000 SPDED	,
		Intel Xeon Gold 8140M	18 Corres	2000 SPEED	>
• To add CPU model to	existing template.	Incl Xcon Gold 9142	16 Cons	3463 SPEED	>
 Settings → Templates 	-	Intel Xeon Gold 8142M	16 Corres	2609 SPEED	*
Edit Template	-	Intel Xeon Gold 5143	16 Cores	3923 SPEED	>
Toggle "Select from (Catalog"	Intel Xeon Gold 8144	8 Eome	2500 SPEED	>
Choose specific CPU	-	Intel Xeon Gold 8148	12 Cores	3200 SPEED	>
		Intel Xeon Gold 5148	20 Cons	3103 SPEED	>
• Run any plan with this	lempiale	Intel Xeon Gold 8148F	20 Cores	8409 SPEED	>



CWOM & UCS Manager

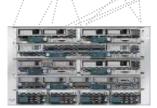
Optimize workloads across UCS estates with integrated knowledge of fabric, IO modules, power & cooling.

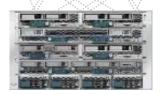
Context

- IT must move quickly to keep up with business needs.
- Programmable infrastructure increased IT agility.
- But, what about the workload?

IT agility =

simplified infrastructure management + workload performance


Problem


Application consumption has implications from the virtualization layer to the physical layer, including fabric, IO modules, power & cooling.

How do you assure performance while maximizing efficiency and maintaining compliance?

What actions does it automate?

Documented benefits of CWOM automated on UCS...

33% increase in orders per minute 24% better response time

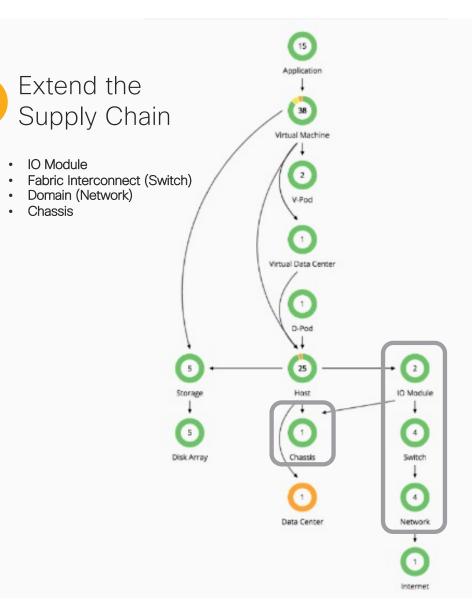
© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

Enhanced VM intelligence when...

- Provisioning additional resources (vMem, vCPU)
- Moving Virtual Machine
- Moving Virtual Machine Storage
- Reconfiguring Storage
- Reconfiguring Virtual Machine

Physical Machines

- Start Physical Machine
- · Provision Physical Machine
- Suspend Physical Machine


Chassis

Provision New Chassis (recommend only)

Fabric Interconnect

- Add Port to Port Channel (recommend only)
- Remove Port from Port Channel (recommend only)
- Add Port (recommend only)

How does CWOM make its decisions?

1

 $\textcircled{\sc 0}$ 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

How does CWOM make its decisions? (cont'd)

 $\textcircled{\mbox{\sc o}}$ 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

How does it work together?

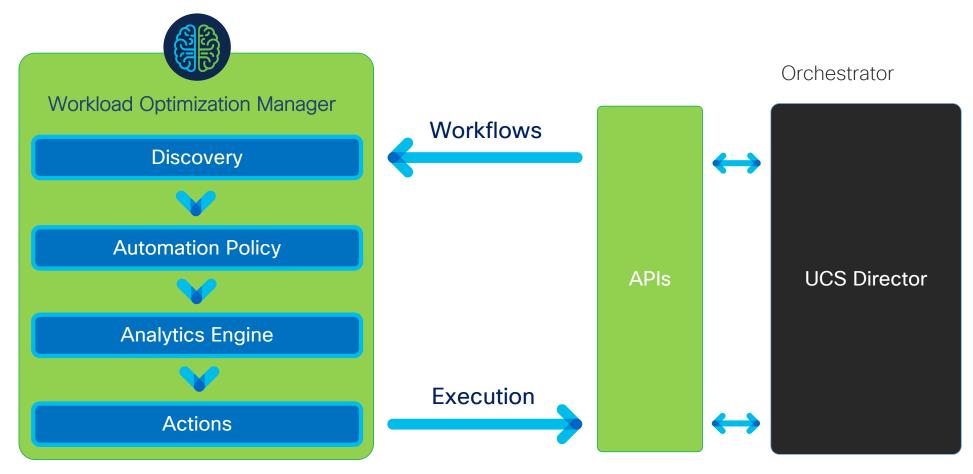
CWOM & UCS Director

End-to-end automation of the virtual, network, storage, and physical stack based on real-time workload demand.

Problem

Elastic real-time infrastructure requires two types of automation.

What actions does it automate?


© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

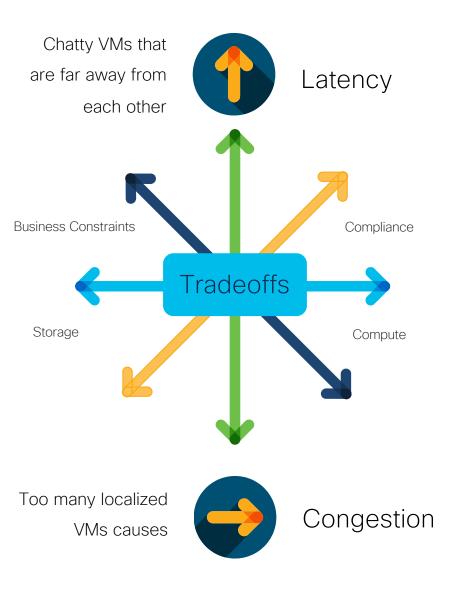
End-to-end automation...

- Provision new host
- Provision new storage
- Decommission host
- Decommission storage
- Resize storage

...based on real-time workload demand.

How does it work together?

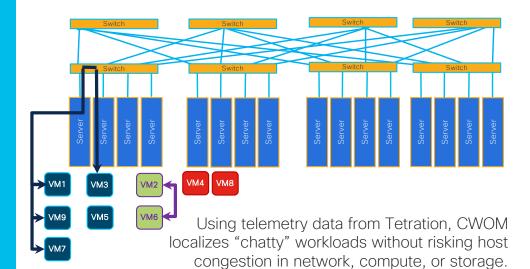
CWOM & Tetration


Network-aware optimization for distributed applications

Network-aware optimization reduces latency.

Problem

- East-west traffic growth
- More dynamic demand on networks



What is being optimized?


CWOM reduces latency by dynamically localizing "chatty" workloads without risking host congestion and while adhering to customer's business requirements.

Chatty workloads across distances = latency.

How does CWOM make its decisions?

How does CWOM make its decisions?

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

Add Flow as a Commodity

2

Level 0: Intra-host Flow that represents chatty VMs in the same host

Level 1: Intra-D-Pod Flow that represents chatty VMs in the same D-Pod

Level 2: Cross-D-Pod Flow that represents chatty VMs across D-Pods

Data Collection Open Access Analytics Actions Hypervisor Host compute Ready queue REST Network-aware continuous ٠ \leftrightarrow placement APIs **Tetration** CWOM • Flow Abstraction (Supply Chain) Analytics (Supply, Demand, Price) Automation (Mediation)

How does it work together?

Demo: Tetration and CWOM

Click here

CWOM & AppDynamics

End-to-end performance optimization, from applications to infrastructure.

Context

Applications are the business.

62%

of users have increasing expectations of how well digital services should perform.

X KBS €

The *busiest bank branch* is the mobile app on the 7:15 a.m. train

Pearson

Education publishing is no longer about text books

The world's largest *taxi company* owns no vehicles

A technology business that happens to be in the betting industry.

Application performance relies on two interdependent things...

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

Apps are written and architected well.

ululu cisco

Apps get the resources they need when they need them.

APP DYNAMICS

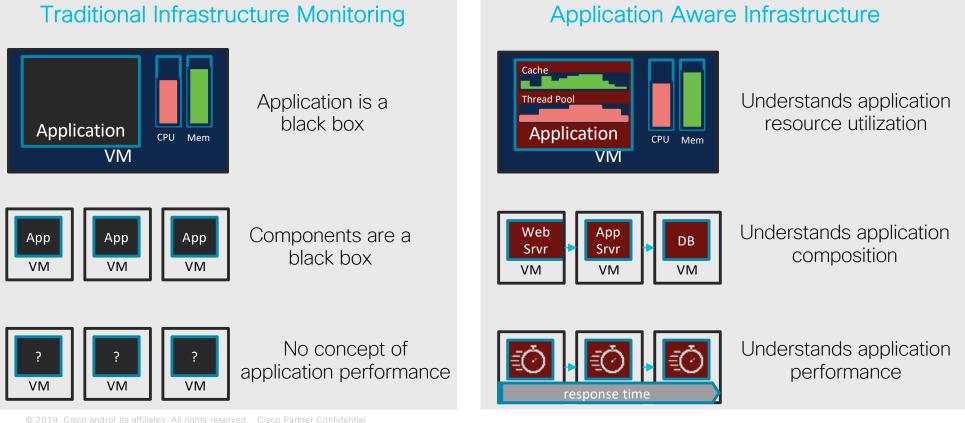
2



What's being optimized?

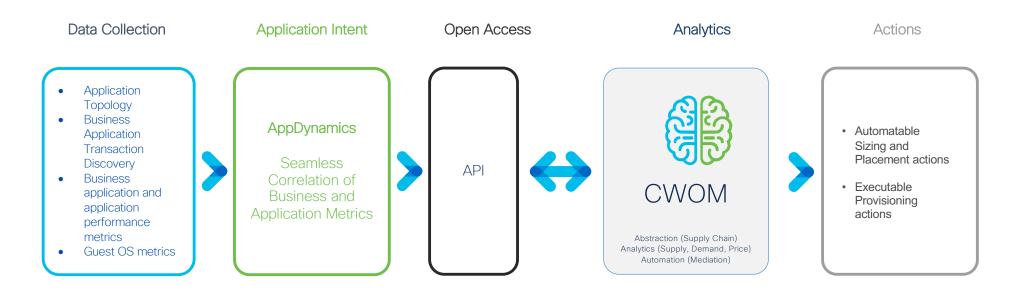
Application performance metrics drive better decisions through the infrastructure.

How does CWOM make its decisions?



U Business Application

1


Cisco CWOM Integration with AppDynamics

Application-Level Understanding Enables Trustworthy Decisions, Automation

Architectural Overview

Application Metrics drive sizing, placement, and capacity actions across the stack.

Benefits

Assure App Performance

Eliminate applications performance risk due to infrastructure, without overprovisioning. Show IT's Business Value

Resource decisions in the infrastructure are directly tied to the performance of business critical applications.

Bridge the App-Infra Gap

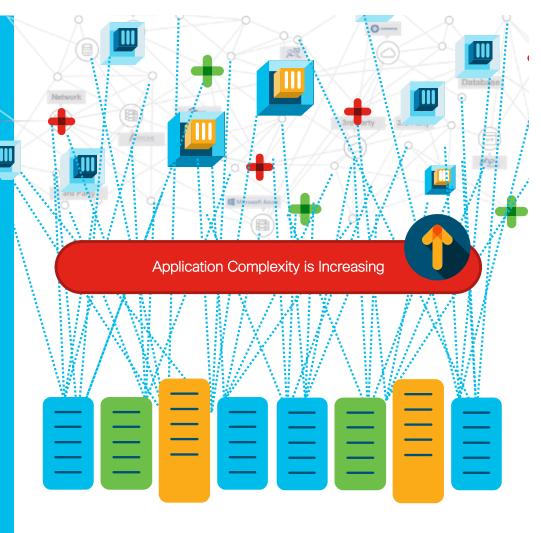
Full-stack automation elevates teams, full-stack visibility provides a common understanding of app dependencies.

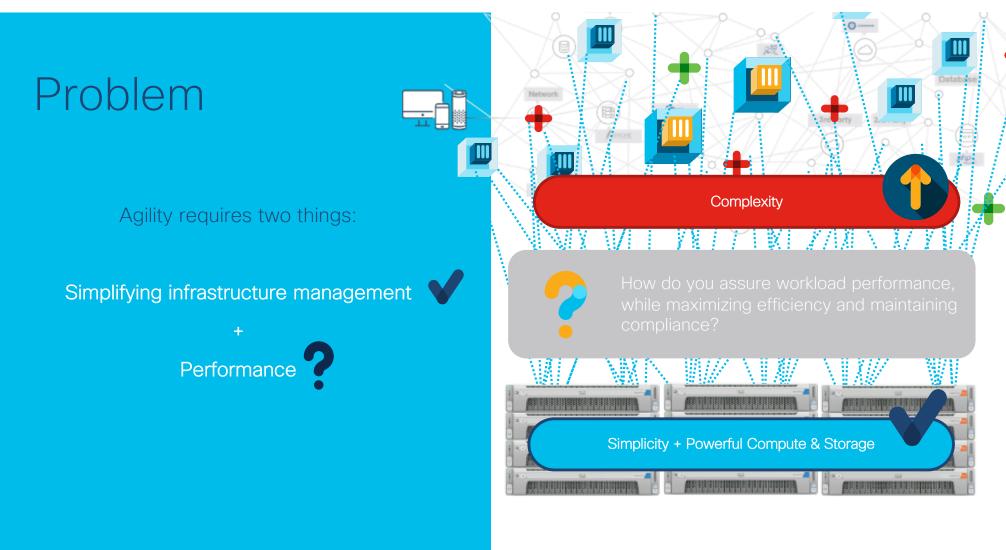
Accelerate App Migration

De-risk app migration projects with holistic understanding of app topology and the data center stack.

Demo Video: AppDynamics & CWOM

Just Turbo-AppD Demo Video: https://vimeo.com/238472559

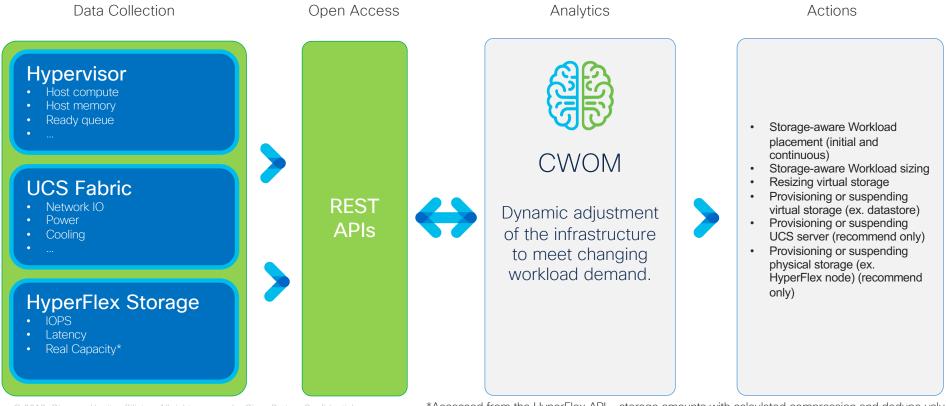



CWOM & HyperFlex

Achieving Agility & Predictable Performance with Self-Managing Hyper-Converged Systems

Context

- Application complexity is increasing...
- Cloud native & microservices are great for developers, but challenge IT agility.
- Hyper-converged is about simplifying infrastructure management to enable IT agility, but....



 $\ensuremath{\textcircled{O}}$ 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

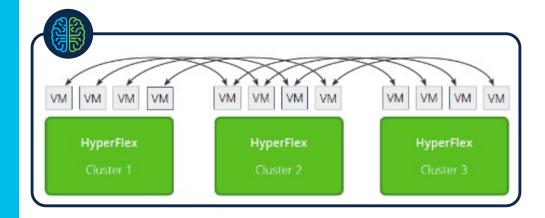
What actions does it automate?

- Storage-aware workload placement (initial and continuous)
- Storage-aware workload sizing
- Resizing virtual storage
- Provisioning or suspending virtual storage (ex. datastore)
- Provisioning or suspending HyperFlex computeonly nodes (recommend only)
- Provisioning or suspending physical storage (ex. HyperFlex node) (recommend only)

How does it work together?

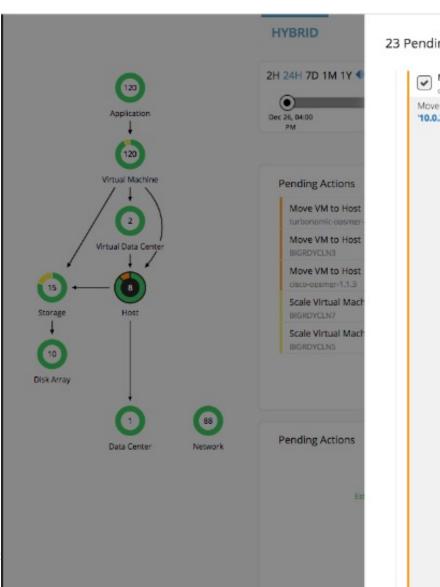
© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

*Accessed from the HyperFlex API – storage amounts with calculated compression and dedupe values.


Key Use Cases for CWOM & HyperFlex

- 1. Super-Cluster Optimization
- 2. Intelligent Independent Scaling of Compute & Storage
- Modernize at the Pace of Your Business

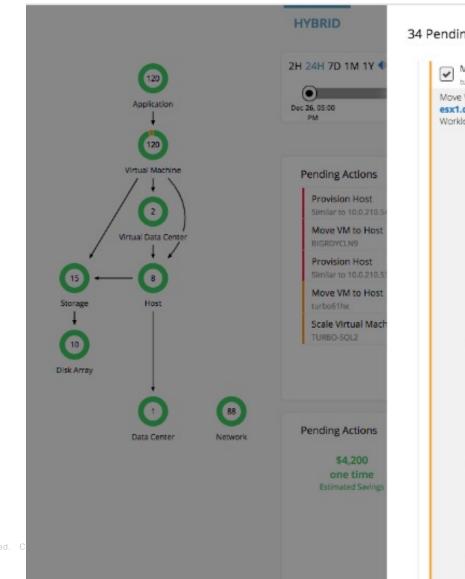
Self-managing HyperFlex systems continuously deliver predictable performance so IT can maximize agility.


Use Case

Super-Cluster Optimization

- CWOM continuously analyzes workload consumption across HyperFlex clusters to determine exactly when, where, and how to move and/or resize existing workloads.
- Analysis accounts for different versions of HyperFlex (hybrid or all-flash) so there's no need for storage tiering.

CWOM provides a specific action to **move the virtual machine** 'cisco-opsmgr-1.1.3' from host '10.0.210.54' to host '10.0.210.52 to ensure workload performance.

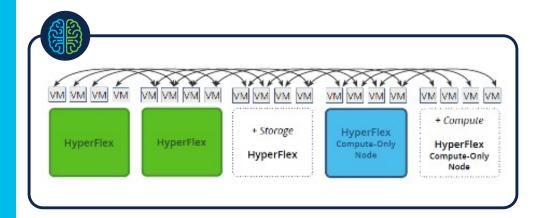


23 Pending Actions

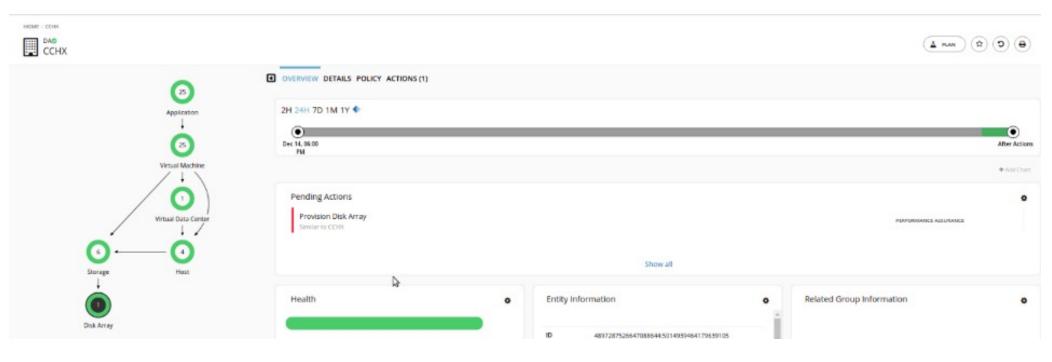
Move VM to Host cisco-opsmgr-1.1.3		PERFORMANCE ASSURANC
Move Virtual Machine 'cis '10.0.210.52', to improve		Host '10.0.210.54' to Host
	cisco-opsmgr-1.1.3	
	VIRTUAL MACHINE	
	1.7 %	0.%
1.42 - 1 BISK INDEX	598.3 GHz	38.1 Mb/s
MON PROPA	CPU PROVISIONED	SWAPPING
3.9 %	D.4 %	0.1 %
383.9 GB	3.7 TB	20 sec
MEMORY	MEMORY PROVISIONED	Q4VCPU
0%	0.96	1.1 %
5 TB	78.1 Gb/s	1.4 TB
STORAGE AMOUNT	NET THROUGHPUT	MEMORY ALLOCATION
2.5 %	0.96	C 96
10 GHz	383.9 GB	228,800.0 IOPS
VIRTUAL CPU	BALLODNING	STORAGE ACCESS
0.1 %	0.96	0.8 %
213.5 GHz	3.9 Gb/s	100 msec
CPU ALLOCATION	IO THROUGHPUT	STORAGE LATENCY
	0.96	16.1 %
1 - 0 PRODUCES	10 TB	16 GB
PRODUCES	STORAGE PROVISIONED	VIRTUAL MEMORY
0.4 %	14.1 %	
59.8 GHz	183.9 GB	1 HOST
CPU	VIRTUAL STORAGE	nusi

© 2019 Cisco and/or its affiliates. All rights reserved. C

CWOM provides a specific action to move the virtual machine 'turbo61hx' and storage 'FNTOP' between clusters-from host '10.0.210.53' to host 'm4esx1.cdnivt.cisco.com'-to ensure compliance with business policies.


34 Pending Actions

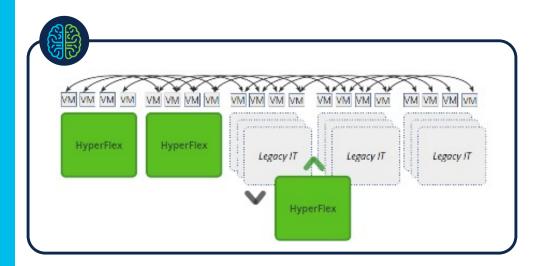
Move VM to Host turbo61hx		COMPLIANCE
Move Virtual Machine 'tur esx1.cdnlvt.clsco.com' a Workload Placement::Plac	ind Storage 'FNTOP' , to	ensure compliance with
	turbo61hx	
	VIRTUAL MACHINE	
1.2 - 1.18	1.7 %	0.96
	598.3 GHz	38.1 Mb/s
RISK INDEX	CPU PROVISIONED	SWAPPING
4.1 %	0.4 %	0 %
383.9 GB	3.7 TB	20 sec
MEMORY	MEMORY PROVISIONED	Q4WCPU
2.9 %	0.96	1.1 96
5 TB	78.1 Gb/s	1.4 TB
STORAGE AMOUNT	NET THROUGHPUT	MEMORY ALLOCATION
1 % 🔿 1 %	0 %	0.96
10 GHz	383.9 GB	228,800.0 IOPS
VIRTUAL CPU	BALLOONING	STORAGE ACCESS
D %	O %	1.3 %
213.5 GHz	3.9 Gb/s	100 msec
CPU ALLOCATION	IO THROUGHPUT	STORAGE LATENCY
	0 %	
1 → 0	4.9 Mbytes 😁	1.5 %
PRODUCES	9.8 Mbytes	10 TB
	FLOW	STORAGE PROVISIONED
8.8 % - 8.1 %	0.2 %	8.3 %


© 2019 Cisco and/or its affiliates. All rights reserved. C

Use Case

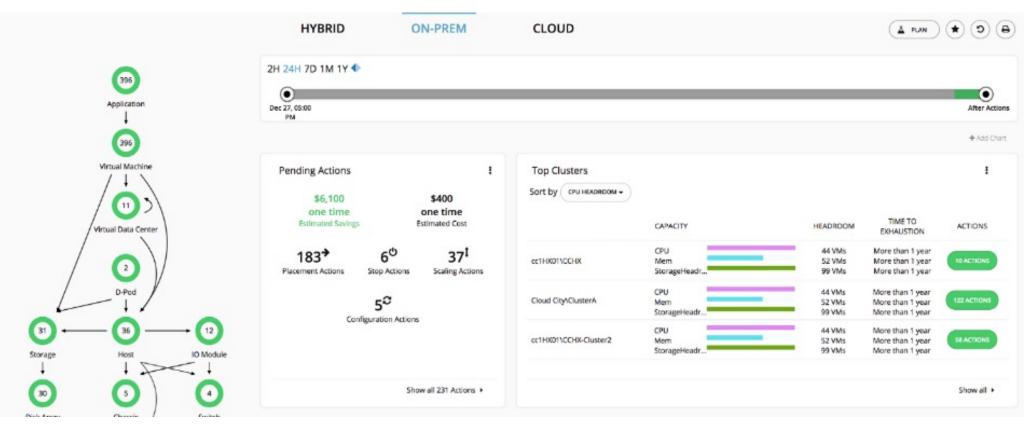
Intelligent Independent Scaling of Compute and Storage

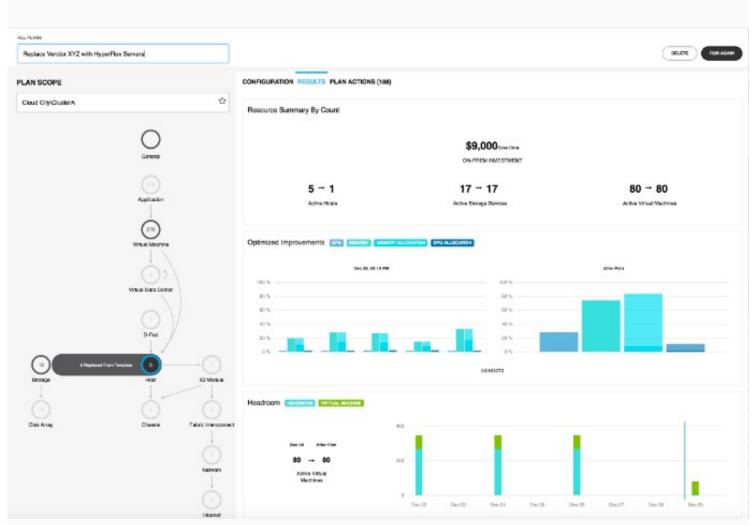
- HyperFlex gives customers the flexibility to scale compute and storage independently based on their unique requirements.
- CWOM scales these resources based on realtime workload consumption, providing intelligent elasticity in HyperFlex clusters that preempts performance degradation.



Below, CWOM provides the action to provision a new disk array similar to 'CCHX' (a HyperFlex cluster) in order to assure performance.

Use Case


Modernize at the Pace of Your Business



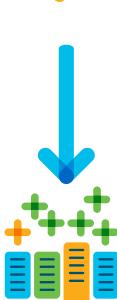
- HyperFlex Systems and CWOM seamlessly integrate with the data center you have today.
- Quickly model "what if" scenarios as your business grows and as you retire legacy infrastructure.

Below, CWOM analyzes workload growth trends to determine when new hardware will need to be purchased. Note the '**Top Clusters**' highlighted and their '**Time to Exhaustion**,' ensuring that you always have the hardware you need to support growth.

Below, CWOM plan results show that workload demand, in this case 276 virtual machines (see supply chain on left), on 5 legacy hosts can be supported with 1 HyperFlex host for a onetime investment of \$9,000. Customers get specific before and after views in order to make fully informed decisions as they modernize their infrastructure.

© 2019 Cisco and/or its affiliates. All rights reserved.

CWOM & CloudCenter


Assure Performance, Minimize Cost, and Maintain Compliance in Dynamic Self-Service Environments

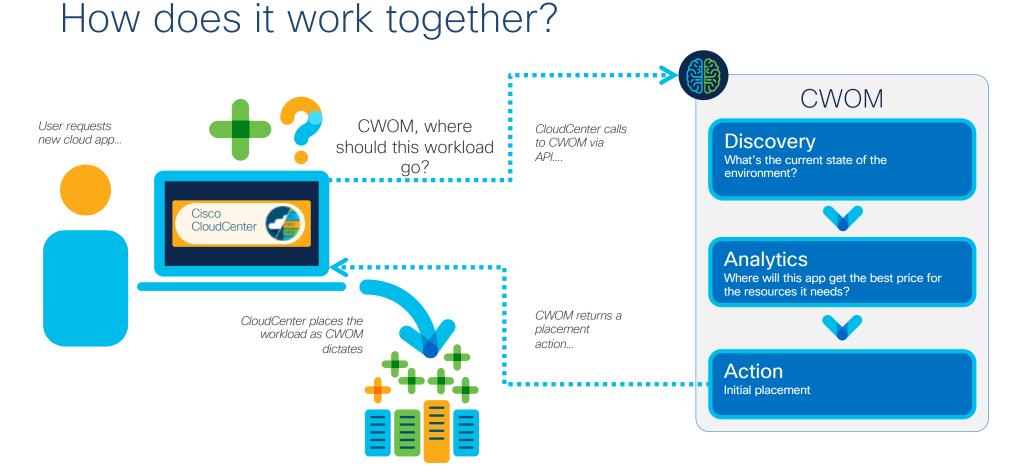
Context

- By 2019 60% of workloads will run in cloud, whether on-premises or off.
- Workload deployments will increase in volume and frequency.
- 98% of organizations say a single hour of downtime costs over \$100,000.

Self-service environments must continuously perform as applications are dynamically deployed into the environment.

Cisco CloudCenter

Problem


- Self-service = dynamic change.
- Multi-cloud estates expand workload placement options, increasing cost overruns and compliance risks.
- Tradeoffs must be made in real time to keep pace with the business.

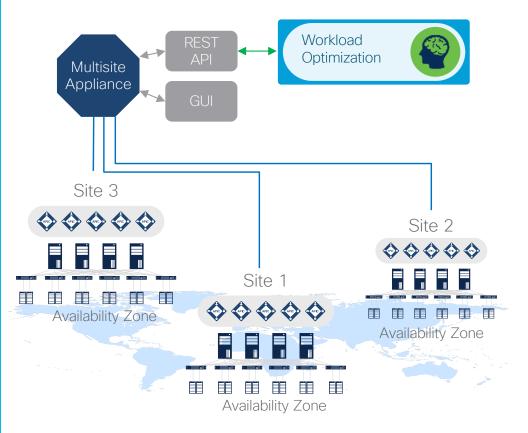
 $\ensuremath{\textcircled{O}}$ 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

What actions does it optimize?

- Initial workload placement on-premises
- Initial workload placement across clouds*

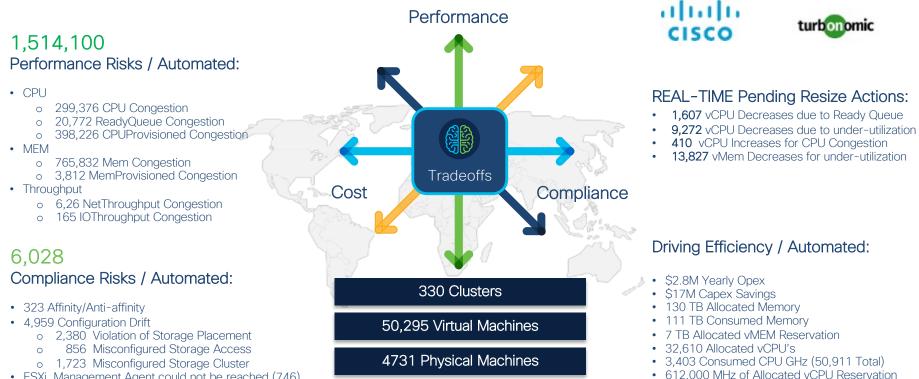
Demo Video: AppDynamics & CloudCenter with CWOM

Click here


ACI

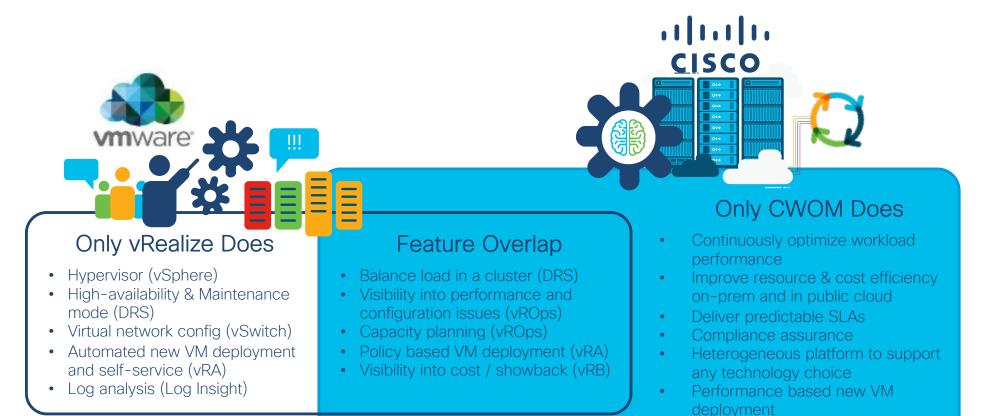
Multi-site mobility and disaster recovery with performance assurance and policy enforcement.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential


Roadmap

Real-time workload placement that satisfies resource, physical, and policy requirements across multi-site architecture.

Success Stories


CISCO IT ...takes 2,500 CWOM actions / day to mitigate risks

6 months —

• ESXi Management Agent could not be reached (746)

Cisco CWOM & VMware vRealize Suite

^{© 2019} Cisco and/or its affiliates. All rights reserved. Cisco Partner Confidential

··||...|.. cisco