Model overview: activity-based costing analysis for

factory logistics in AnyLogic

6/15/2022 » 14 minutes to read

NOTE
The ABCA model is used by the Factory logistics sample.

Activity-based costing analysis (ABCA) is a factory logistics control mechanic that optimizes output while
reducing operational costs. Activity-based costing analysis depends on accurate monitoring of factory activities
and tracing of resource consumption in addition to the typical costing analysis of final output.

The AnyLogic simulator included in the Factory Logistics Accelerator implements a discrete event simulation
that models a simplified factory floor. The model focuses on high-level processes and abstracts away some real-
world details to support flexibility and customization so that it can be applied to similar manufacturing
processes across varied industries.

¥ Anylogic Personal Leaming Edition [PERSONAL LEARNING USE ONLY] - o X
File Edit View Drow Model Tools Help

BE-reH& ? X wmO~-&|+# & s[w0on «|| - BN f D @lgin ~
% Projects 12 = 0 | D = O || properties 32 ®i=o
v [] Activity Based Costing Analysis (Bonsai) _ || © Main - Agent Type
‘Activity Based Costing Analysis Animation & Name |[Main Dignore
1 ¥ i i v . | B » Parameters preview
e —

- || ¥ Agentactions
T L - || ¥ Agentinflowcharts

i » Dimensions and movement

X X = || v Space and network
0 59 ||+ Advanced Java
1 ||+ Advanced

| ||+ Description

agent.

How the ABCA model works

The model traces product lot movements as the lots arrive, pass through machine and conveyer operations,
then exit the system:

e product lot: a discrete unit of goods created in the factory being modeled.

e system: a finite portion of the factory being modeled.

e resource pool: a finite pool of inputs required to move a product lot through the system, which are seized
(claimed) when a product lot enters the system and potentially released when the product lot leaves the
system. Resource pools have explicit, quantified capacities.

e machine: a generic representation of factory equipment used to process an incoming product lot. Machines
have an associated queue length (how many lots are waiting for the machine) and throughput (how lots can
be processed simultaneously). Machines are constrained by the number of available resources.

e conveyer: a generic representation of factory infrastructure used to move a product lot through the system.

e cost object: a representation of the costs associated with using or consuming a resource unit.

The optimization goal of the ABCA model is to reduce the operational cost per product lot while maintaining a
high production throughput according to the configured manufacturing schedule. Incoming lots claim resources
from the two available resource pools, complete processing, then release any unconsumed resources.

The model also tracks resources allocation and resource consumption management based on dynamic demand
to calculate the operational costs associated with resource utilization. The operational costs accumulated at each
production step are broken-down into several categories for analysis and optimization.

ABCA model components
The ABCA model has many moving parts, but the key components are:

e simulation visualizer

® source generation

® resource queues

® resource pools

e machine activity modeler

e conveyor activity modeler

real-time
output

visualization

resource queues

conveyor

activity

resource
pools

activity".

The settings for source generation, resource pool capacity, machine processing time, and conveyor speed all
have default settings, but can be changed while the simulation is running by dragging the associated slider.

Simulation visualizer

The simulation visualizer lets you monitor in real time as things change while the simulation runs. The

visualization is useful when running the local (unmanaged) version of the simulator during training on Bonsai.
ABCA model output includes responsive meters, the current cost per product lot, and summary information on:

e the number and percentage of product lots currently processing.

the number and percentage of product lots being conveyed.

the total number and percentage of resources going unused (idling).

the total number and percentage of product lots blocked and waiting for resources.

Source generation

The source generation component creates new product lots and injects them into the system. ABCA model
implements source generation as an AnyLogic Source block.

Product lot generation follows a Poisson distribution, which mimics a situation where product lots arrive with
exponentially distributed inter-arrival times and an average arrival time of [1/conﬁgured_arri\/a|_rate 1. The
parameterized arrival rate is the expected number of product lots that will enter the system over a specific
period of time, for example, 2 per day.

IMPORTANT

Arrival rate is an expected value, not a guaranteed value. Using a Poisson distribution means that the arrival time
calculated during simulation is not deterministic. For example, if the configured arrival rate is 2 per day, when the
simulation runs, the effective product lot arrival rate value could fluctuate between 0.5 to 2 per day. The intent is to model

a realistic arrival rate that is subject to change due to external factors.

Resource queues

Resource queues give the simulation a place to put product lots when something stops them from moving
forward in the process. The ABCA model implements resource queues as AnyLogic Queue blocks.

Queues work as transitional blocks within the simulation:

e [fthereis available space on the conveyor after the queue, the product lots passes through in zero
simulated time.

e [fthereis no available space on the conveyor after the queue, the product lot idles in the system until
space becomes available.

The most important property of a queue is the capacity setting, which specifies the maximum number of entities
that can be accumulated inside that queue at any point in time. Product lots cannot enter a queue while it is at

capacity.

Resource pools

Resource pools (Resource A and Resource B) represent the set of available system resources for processing
product lots. The ABCA model implements a system resource pool as a set of AnyLogic ResourcePool, Seize, and
Release blocks with a parameterized resource capacity.

The ABCA model includes two resource pools that can be configured independently. When the simulator starts,
it creates a set of resource units based on the associated parameter settings. Once created, resource units
remain idle until they are seized by a product lot.

Machine activity modeler

The machine activity modeler captures the time and factory equipment cost for processing product lots. The
ABCA model implements machine activity as an AnyLogic Delay block with a parameterized mean delay value.
Delay blocks stop simulation progress by holding the product lot in the block for a given amount of time and
block capacity is dependent on the number of resources in the system.

The ABCA models processing delay with a parameterized triangular distribution based on the target mean
processing time. As a result, product lots can spend between 1 to 12 days in processing (plus or minus 30%). For
example, if simulation is configured with a mean processing delay of 5, a given product lot will spend between
3.5 and 6.5 days in the Delay block. As processing time is based on a random distribution, each individual
product lot will be delayed for a slightly different amount of time.

Conveyor activity modeler

The conveyor activity modeler captures the time and cost related to moving product lots through the system.
The ABCA model implements conveyor activity as an AnyLogic Conveyor block with a parameterized speed.

Conveyor blocks have a defined length and move product lots along a path with a constant speed while

preserving a minimum space between the lots.

ABCA Anylogic objects

NAME

ABCAgent

ABCAResourceUnit

Main.ABCAgents

Main.auxQueueA

Main.auxQueueB

Main.bonsaiConnector

Main.conveyor

Main.process

Main.queue

Main.releaseA

Main.releaseB

Main.resourceA

Main.resourceB

Main.seizeA

Main.seizeB

DESCRIPTION

A discrete product lot

A discrete resource unit

Models the total set of

product lots currently in the

system

Models the resource queue
for resource pool A

Models the resource queue
for resource pool B

Container for Bonsai
workspace configuration
details

Models current conveyor
activity in the system

Models current machine
activity in the system

Models the product lot
capacity of the conveyor

Models the process of
releasing resources back to
resource pool A

Models the process of
releasing resources back to
resource pool B

Models the current set of
resource units in resource
pool A

Models the current set of
resource units in resource
pool B

Models the process of
claiming resources from
resource pool A

Models the process of
claiming resources from
resource pool B

RELATED PARAMETER SET

General

None

None

Resource pool

Resource pool

Bonsai

Conveyor

Machine

None

None

None

Resource pool

Resource pool

None

None

STATIC SETTINGS

None

None

None

None

None

Simulator name Timeout

Length

Capacity

Capacity

None

None

Speed

Speed

Queue capacity

Queue capacity

NAME DESCRIPTION RELATED PARAMETER SET STATIC SETTINGS

Main.sink Models the process of None None
product lots leaving the
system

Main.source Models the process of General None
product lots entering the
system

Simulation parameters

Bonsai parameters

Bonsai parameters let you connect the unmanaged version of the ABCA simulator to your Bonsai workspace.

e accessKey [Unset] An authorization key used by the simulator to connect to your Bonsai workspace. Follow
the instructions in Get your workspace access key to set the parameter string.
e bonsaiMode [-1]Indicates whether the simulation is connected to a Bonsai brain. A value of 1 indicates

the simulation should expect input from a brain. A value of -1 indicates that the simulation is running in
isolation.

o workspacelD [Unset] The Azure object ID associated with your Bonsai workspace. Follow the instructions
in Get your Bonsai workspace details to set the parameter string.

Conveyor parameters

Conveyor parameters define the capabilities of the conveyors associated with the system.

e ConveyorSpeed [e.001] The speed in meters per second that at which products move through the
system. Speed is constant.

e RelativeMoveCost [0.3] The per-hour cost of moving a product lot along the conveyor.

General parameters

General simulation parameters set holistic state details about the system.

e ArrivalRate [o.65] Average number of product lots that arrive at the system per day. Inter-arrival times
are exponentially distributed.

e ExistenceCostPerHour [1] Captures the cost units per hour incurred by a product lot by existing in the
system. For example, the cost of electricity required to run refrigeration for lots that have not shipped yet.

Machine parameters

Machine parameters define the state of activity for the factory equipment associated with the system.

e MeanProcessDelay [2] The average time in days (N) that an individual product lot spends processing in
the machine. Simulation calculations are based on a triangular distribution with a minimum value of 0.7N
and maximum of 1.3N.

e RelativeProcessingCost [.3] The per-hour cost of processing a product lot in the machine.

Resource pool parameters

Resource pool parameters define the state of activity for the resource pools associated with the system.

e ResourceACapacity [12] The number of resource units available in resource pool A.
e ResourceBCapacity [12] The number of resource units available in resource pool B.
e BusyCostPerHourA [3] The per-hour cost of a resource in use from pool A.

e BusyCostPerHourB [5] The per-hour cost of a resource in use from pool B.

o |dleCostPerHourA [2] The per-hour cost of a resource sitting unused in pool A.

o |dleCostPerHourB [2] The per-hour cost of a resource sitting unused in pool B.

e sizeBufferQueues [45] The number of product lots that can be queued while waiting for resources from

either of the pools. The value should be less than or equal to the total capacity of the conveyor.

Simulation process flow

The ABCA model is a continuous simulation with the following process flow:

1. The source block generates product lots with exponentially distributed inter-arrival times.
2. Each incoming product lot tries to seize one resource unit from resource pool A.

e [f units of resource A are not available, the lot waits in a queue (auxQueueA) until a resource unit is
available.

e [f units of resource A are available, the product lot seizes the resource.
3. The product lot is processed (delayed) in the machine block.

4. When the product lot leaves the machine it releases resource A, which is now available for other product lots

to seize.
5. The product ot is conveyed to an arbitrary point.
6. The product lot tries to seize one resource unit from resource pool B.

e [f units of resource B are not available, the lot waits in a queue (auxQueueB) until a resource unit is
available.

e [f units of resource B are available, the product lot seizes the resource.
7. The product lot is processed (delayed) in the machine block.

8. The product lot is conveyed to the sink block, which represents the lot exiting the system and releases
resource B, which is now available for other product lots to seize.

Waiting Processing ‘Waiting Conveying
[[
source auxQueueA seized auxQueueB seizeB process relsased queus conveyor releasel sink
A ale) oo o e {ale} o~
+) o
W o o ® o 8 o/
@
wrrivalRate resourcel resourceB
@ @ @
xistenceCostPerHour MeanProcessDelay ConveyorSpeed
Resources (ldle cost) Q‘- Q#

resourceB widgets are labeled "Resources (Idle cost).

The simulation is forcibly terminated if the system becomes overloaded. The system is considered overloaded
whenever the number of lots in auxQueueA (the queue for seizing a resource unit from resource pool A)

exceeds the buffer capacity set for the queue. Whenever auxQueueA exceeds capacity, it indicates that the
number of product lots entering the system greater than the number of product lots leaving the system, which
typically happens for one (or more) of the following reasons:

e There are too few resources available in resource pool A
e There are too few resources available in resource pool B
e The machine processing time is too long

e The conveying speed is too slow

Operational cost calculations

Operation cost for an individual product lot is defined to be the combination of costs for conveying and
processing the lot in addition to any inherent cost associated with having the lot in the system.

ProductLotCost = ExistenceCost +
BusyCost +
IdleCost +
ProcessingCost +
ConveyingCost

e ExistenceCost is a configured "work-in-progress” or holding cost in dollars-per-hour (ExistenceCostPerHour
) that applies as long as the product lot exists in the system.

e BusyCost is the sum of all configured costs in dollars-per-hour that apply while a resource unit is claimed
from a specific resource pool X for performing process operations on a product lot (BusyCostPerHourX).

e |dleCost is the sum of all configured costs in dollars-per-hour that applies while a resource unit is sitting
unclaimed in a specific resource pool X (IdleCostPerHourX).

e ProcessingCost is a calculated cost in dollars-per-hour that applies while a product lot is delayed in the
machine. While not explicitly modeling processing activities, the calculated processing cost can be imagined
as attributable to the associated maintenance costs, where a faster machine speed (less delay) results in more
internal wear and thus an increased upkeep cost. The processing cost of a product lot is calculated as the
configured processing cost divided by the square of the mean processing time [RelativeProcessingCost / (

MeanProcessDelay)%].

e ConveyingCost is a calculated cost in dollars-per-hour that applies while a product lot is delayed in the
machine. While not explicitly modeling a conveyor, the calculated conveying cost can be imagined as
attributable to the associated maintenance costs, where a faster or longer conveyor results in more break
points and increased wear and thus an increased upkeep cost. The conveying cost of a product lot is
calculated as the configured conveying cost multiplied by the square of the conveyor speed [

RelativeMoveCost X (ConveyorSpeed)2].

In the ABCA model, the cost in dollars-per-hour for an individual product lot is the combination of the existence
cost, the cost of the resources used, and the cost of actually processing the lot in the machine:

ProcessCost = ExistenceCostPerHour +
[BusyCostPerHourA + BusyCostPerHourB] +
[RelativeProcessingCost / (MeanProcessDelay)”2]

To calculate the full operational cost over time, the ABCA model accumulates the individual per-lot costs for:

e processing the product lots (accumProcessCost)
® resource units sitting idle (accumIdleCostA , accumIdleCostB)
e product lots waiting in the system (accumwaitingCost), which includes:

o idling in resource queues (accumSeizeAQCost , accumSeizeBQCost)

o idling on the conveyor (accumConveyorQCost)
o seizing resources (accumSeizeAQCost , accumSeizeAQCost)

e movement through the system (accumMovecCost)

The total operational cost per product is calculated by dividing the sum of these costs by the number of product
lots that have left the system.

TotalOperationalCost = accumProcessCost +
[accumIdleCostA + accumIdleCostB] +
accumWaitingCost +
accumMoveCost

OperationCost = TotalOperationalCost / productCount

Bonsai brain integration

Once you set the parameters for the Bonsai connector, you can run the unmanaged (local) version of the ABCA
simulator to train a new version of the Bonsai brain included with the solution accelerator. The goal of the brain
is to adaptively adjust the number of available resources, processing time, and conveyor speed to maintain a
minimum cost per product lot for a specific arrival rate.

NOTE

Any time you move one of the component sliders, the cost statistics will be reset, so the observed metrics will be
specifically for the newly chosen arrival rate.

Observable and action spaces

Information is passed between the simulation and Bonsai according to the observable space and the action
space defined in the Inkling file associated with the brain:

e The observable space defines the information provided by the simulation that the brain will use to make
predictions.

e The action space defines the simulation parameters the brain can change.

Information about the observable space and action space is exchanged using the input parameters defined in
the ABCA model and the Inkling fields defined in the ObservableState and Action types.

SPACE MODEL PARAMETER INKLING FIELD ALLOWABLE RANGE

Observable space ArrivalRate ObservableState.arrivalRate [0.5, 2.0]

Action space ResourceACapacity Action.numResourceA [1, 20]

Action space ResourceBCapacity Action.numResourceB [1, 20]

Action space MeanProcessDelay Action.processTime [1.0, 12.0]

Action space ConveyorSpeed Action.conveyorSpeed [0.01, 1.0]
Training

The Inkling file included with the solution accelerator will train a brain in episodes of six-months. At the start of
each episode, the brain attempts an action based on the information in the observable state. The next
observation occurs after six simulated months pass. At that time, the brain observes the outcome of its action

before beginning a new episode. As a result, the brain only has one chance to find an optimal configuration for
the action space. The long duration between episodes is due to the relatively low rate of arrivals in the
simulation (0.5 — 2 product lots per day) and the relatively long processing time per product lot (1 - 2 days).

The success of the configuration selected by the brain (the reward) is calculated as the negated cost per product
lot, with a large penalty if the system becomes overloaded. With each episode, the brain tries to maximize the
negation in order to minimize the overall cost per product lot.

Once trained, the brain will change the action space parameters of the simulation whenever you move one of
the component sliders to minimize the operational cost per product unit as much as possible.

