

70-486: Developing ASP.NET MVC Web Applications

Candidates for this exam are professional developers who use Microsoft Visual Studio 20120157 and Microsoft .NET

FrameworkASP.NET to design and develop web solutions. Candidates should have a minimum of three to five years of

experience developing Microsoft ASP.NET MVC–based solutions and knowledge of Microsoft Azure Web Apps.

Candidates should also have the following experience:

• Designing and developing web applications in an ASP.NET MVC model

• Planning and designing user interaction solutions based on business requirements

• Experience with the full software development life cycle of web applications

• Developing and deploying to multi-tier environments, including Azure

• Designing and developing asynchronous solutions

Objective Domain

Note: This document shows tracked changes that are effective as of January 15, 2018.

Design the application architecture (15-20%)

Plan the application layers

Plan data access; plan for separation of concerns,; appropriate use of models, views, controllers, view

components, and view service dependency injection; choose between client-side and server-side processing;

design for scalability; ; choose between ASP.NET Core and ASP.NET; choose when to use .NET standard

libraries; understand differences between DNX and DNX core

Design a distributed application

Design a hybrid application; plan for session management in a distributed environment; plan web farms; run

Microsoft Azure services on-premises with Azure Pack; enable deferred processing through Azure features

(including queues, scheduled, and and on-demand jobs, Azure Functions, and Azure Web Jobs, etc.).)

Design and implement the Azure Web Apps life cycle

Identify and implement Start, Run, and Stop events are triggered; code against application events in your

applications; identify configure startup tasks, including (IIS, app pool configuration, and [app pool], third-

party tools)

Configure state management

Choose a state management mechanism including (in-process and , out of process, and Redis- based state

management); plan for scalability; use cookies or local storage to maintain state; apply configuration settings

in web.config files; implement sessionless state (including for example, Qquery sStrings;), configure

middleware to enable session and application state in ASP.NET Core)

Design a caching strategy.

Implement page output and donut caching (performance oriented)caching and; implement data caching;

create cache profiles; implement HTTP caching; implement Azure Redis caching; plan a content delivery

network (CDN) strategy, for example, Azure CDN

Design and implement a Web Socket strategy

Read and write string and binary data asynchronously; choose a connection loss strategy; decide when to use

Web Sockets; implement SignalR; enable web socket features in an Azure Web App instance

Design HTTP modules and handlers

Implement synchronous and asynchronous modules and handlers, choose between modules and handlers in

IIS

Design a configuration management solution

Manage configuration sources, including XML, JSON, and INI files; manage environment variables; implement

Option objects; implement multiple environments using files and hierarchical structure; manage sensitive

configuration; react to runtime configuration changes; implement a custom configuration source; secure

configuration by using Azure Key Vault; use the Secret Manager tool in development to keep secrets out of

your code for configuration values

Interact with the host environment

Work with file system using file providers; work with environment variables; determine hosting environment

capabilities; implement native components, including PInvoke and native dependencies for hosts including

Linux and Windows; use ASP.NET hosting on an Open Web Interface for .NET (OWIN)-based server

Compose an application by using the framework pipeline

Add custom request processing modules to the pipeline; add, remove, and configure services used in the

application; design and implement middleware; design for kestrel, Http.sys web server and IIS; design and

implement startup filters

Design the build and deployment architecture (10-15%)

Design a browser artifact build strategy

Design a JavaScript build pipeline using Gulp, Grunt, npm and Bower; design an artifact build strategy using

Less, Sass and Font Awesome; design and implement a bundling and minification strategy for broswer

artifacts, including JavaScript, CSS and images

Design a server build strategy

Manage NuGet dependencies; target runtimes, including the full .NET Framework, .NET core, and .NET

standard; manage debug and release configurations, including compilation and optimization options; include

or exclude files from build; manage build sources, including content, resources, and shared files; implement

metadata for projects, including version, release notes, and descriptions; define other build options, including

xmlDoc and warningsAsErrors; work with static files in ASP.NET core

Design a publishing strategy

Implement application publishing using dotnet.exe; manage publishing options in csproj; implement

additional tooling; implement pre-publish and post-publish scripts; implement native compilation; publish to

Docker container image

Implement an Azure deployment strategy

Deploy Azure Web App using supported deployment models including FTP, Kudu, Web Deploy, and Visual

Studio Publishing Wizard; provision ARM- based resources while deploying applications; implement

deployment environments, including dev, test, and prod in Azure; use deployment slots for staging sites;

deploy to Azure Stack

Implement a on-premises deployment strategy

Deploy application to IIS using Web Deploy, xcopy, and Visual Studio Publishing Wizard; deploy application to

Windows Nano Server, deploy application to IIS Hosted Web Core, deploy application to HTTP.sys web server;

deploy application to Kestrel on Windows and Linux; implement reverse proxying to Kestrel using IIS and

Nginx

Design the User Experience (2015-2520%)

Create elements of the user interface for a web application

Create and apply styles by using CSS; structure and lay out the user interface by using HTML, including

HTML5; implement dynamic page content based on a design; use client framework package management;

leverage CSS processors to simplify application style maintenance

Design and implement UI behavior

Implement client-side forms validation; use JavaScript to manipulate the DOM; extend objects by using

prototypal inheritance; use AJAX to make partial page updates; implement the UI by using JQuery

Compose Design the UI layout of an application

Implement partial views and view components for reuse in different areas of the application; design and

implement pages by using Razor syntaxPages; design and implement layouts to provide visual structure;

define and render optional and required page sections; create and use tag and HTML helpers to simplify

markup

Enhance application behavior and style based on browser feature detection

Detect browser features and capabilities; create a web application that runs across multiple browsers and

mobile devices; enhance application behavior and style by using vendor-specific extensions, for example, CSS

Plan an adaptive UI layout

Plan for running applications in browsers on multiple devices (screen resolution, CSS, HTML), plan for mobile

web applications

Plan a responsive UI layout

Plan for applications that run on multiple devices and screen resolutions; use media queries and Bootstrap’s

responsive grid; detect browser features and capabilities; create a web application that runs across multiple

browsers and mobile devices; enable consistent cross-browser experiences with polyfills

Plan mobile UI strategy

Implement mobile specific UI elements such as touch input, low bandwidth situations, and device

oritentation changes; define and implement a strategy for working with mobile browsers

Develop the User Experience (15-20%)

Plan for search engine optimization and accessibility

Use analytical tools to parse HTML; provide an xml sitemap and robots.txt file to improve scraping; write

semantic markup for accessibility, for example, screen readers; use rich snippets to increase content visibility

Plan and implement globalization and localization

Plan a localization strategy; create and apply resources to UI including JavaScript resources; set cultures;

implement server side localization and globalization create satellite resource assemblies

Design and implement MVC controllers and actions

Apply authorization attributes, global filters (e.g., including global, , and authentication, and overriddable

filters); specify an override filter; use choose and implement custom HTTP codesstatus codes and responses;

implement action results; implement MVC areas; implement Dependency Injection for services in controllers;

implement model and property binding; use best practices in model binding

Design and implement routes

Define a route to handle a URL pattern; apply route constraints; ignore URL patterns; add custom route

parameters; define areas; define routes that interoperate with Single Page Application frameworks such as

Angular;

Control application behavior by using MVC extensibility points `

Create custom middleware and inject it into the pipeline; implement MVC filters and controller factories;

control application behavior by using action results, model binders, and route handlers; inject services into a

view

Reduce network bandwidth

Bundle and minify scripts (CSS and JavaScript); compress and decompress data (using gzip/deflate; storage);

plan a content delivery network (CDN) strategy, for example, Azure CDN

Design and implement serialization and model binding

Serialize models and data using supported serialization formats, including JSON, XML, protobuf, and

WCF/SOAP; implement model and property binding, including custom binding and model validation;

implement web socket communication in MVC; implement file uploading and multipart data; use AutoRest to

build clients

Troubleshoot and Debug Web Applications (20-25%)

Prevent and troubleshoot runtime issues

Troubleshoot performance, security, and errors;

implement tracing, logging, and debugging (iincluding IntelliTrace); enable and configure health monitoring

(including Performance Monitor)); configure and use App Insights runtime telemetry

Design an exception handling strategy

Handle exceptions across multiple layers; use MVC middleware to configure error handling; use different

exception handling strategies for different environments; create and display custom error pages; configure a

custom pipeline for error handling; handle first chance exceptions; configure and use App Insights; log

application exceptions;

Test a web application

Create and run unit tests, for example, use the Assert class, create mocks and stubs; create and run web tests

including using Browser Link; debug a web application in multiple browsers and mobile emulators; use Azure

DevTest Labs; use Visual Studio Team Services

Debug an Azure application

Collect diagnostic information by using Azure App Insights; choose log types, for example, event logs,

performance counters, and crash dumps; stream logs directly to Visual Studio from a deployed site; debug an

Azure application by using Visual Studio andStudioand remote debugging; interact directly with remote Azure

websites using Server Explorer

Design and Implement Security (2015-2520%)

Configure authentication

Authenticate users; enforce authentication settings; implement ASP.NET Core Identity; enable Facebook,

Google and other external providers; implement account confirmation, password recovery, and multi-factor

authentication. P; performPerform authentication using Azure Active Directory, Azure Active Directory B2C,

Azure Active Directory B2B, and Microsoft Identity.; choose between Windows, Forms, custom

authentication, and organizational accounts including work/school accounts and Active Directory–based

providers; manage user session by using cookies; acquire access tokens using the Microsoft Authentication

Library (MSAL)configure membership providers; create custom membership providers; configure ASP.NET

Identity

Configure and apply authorization

Create roles; authorize roles programmatically; configure and work with custom UserStores using

middleware; configure controllers and actions to participate in authorization

Design and implement claims-based authentication across federated identity stores

Implement federated authentication by using Azure Access Control Service;perform authentication and

authorization using tokens suchincluding as OpenID, OAuth, JWT, SAML, bearer tokens, etc. handle token

formats (for example, oAuth, OpenID, Microsoft Account, Google, Twitter, and Facebook) for SAML and SWT

tokens

Manage data integrity

Apply encryption to application data; apply encryption to the configuration sections of an application; sign

application data to prevent tampering; secure data using Azure Key Vault; implement encryption for data

protection using the data protection APIs in transit and at rest

Implement a secure site with ASP.NET

Secure communication by applying SSL certificates; require SSL for all requests; enable SSL hosting in the

development environment; implement SSL using Azure Load Balancers; salt and hash passwords for storage;

use HTML encoding to prevent cross-site scripting attacks (ANTI-XSS Library); implement deferred validation

and handle unvalidated requests, for example, form, querystring, and URL; prevent SQL injection attacks by

parameterizing queries; prevent cross-site request forgeries (XSRF); utilizeuse Azure Security Center to

monitor Azure resources; implement Cross Origin Resource Sharing (CORS)CORS; implement protection

against open redirect attacks

