
Exam 70-357: Developing Mobile Apps – Skills 

Measured 

 

Audience Profile 

Candidates for this exam are experienced developers who design and develop Windows 10 apps 

for deployment to either the Windows Store or Windows Store for Business. 

Candidates typically have more than two years of experience developing Windows apps using 

C# and XAML, in addition to experience with WPF or Silverlight for Windows Phone. Candidates 

should also have experience with the Model-View-ViewModel (MVVM) design pattern and Entity 

Framework, along with authentication technologies. Visual Studio 2015 experience is highly 

recommended. 

Skills Measured 

NOTE: The bullets that appear below each of the skills measured are intended to illustrate how 

we are assessing that skill. This list is not definitive or exhaustive. 

NOTE: In most cases, exams do NOT cover preview features, and some features will only be 

added to an exam when they are GA (General Availability). 

Develop a XAML page layout for an adaptive UI (10–15%) 

Construct a page layout 

 configure a RelativePanel layout; select the appropriate XAML layout panel based on the 

UI requirement; configure a grid with appropriate column and row properties; configure 

alignment, margins, and padding 

Implement responsive and adaptive UI behaviors 

 differentiate between responsive and adaptive UI behaviors, create responsive and 

adaptive UIs by using VisualStateManager and AdaptiveTriggers, implement settings 

syntax for element properties and attached properties 

Create and use custom controls within an adaptive UI 

 evaluate when to create a custom control; create a custom control; implement styles, 

themes, and resource dictionaries; apply styles to custom controls by using Generic.xaml 



Optimize a page layout 

 reduce complexity for performance gains, reduce unnecessary nesting 

Implement page navigation and lifecycle events (10–15%) 

Choose the appropriate navigation structure for an app 

 evaluate when to implement the Hub, Master/Details, Tabs and Pivot, and Nav Pane 

navigation patterns; evaluate when to implement a custom navigation pattern 

Implement Nav Pane navigation 

 load page content by using Frame.Navigate, implement page navigation by using the 

Nav Pane pattern; implement a SplitView control for use as a navigation pane; support 

accessibility requirements within navigation by implementing key based navigation, UI 

automation, and narrator; handle Back button behavior for different Windows 10 device 

families 

Manage app activation 

 launch an app, activate an app on Startup, implement activation from a deep link, 

implement activation based on Search integration, implement activation from a 

secondary tile 

Manage app suspension and resuming 

 prepare an app for suspension, resume from suspension or termination, extend 

execution and monitor suspension errors 

Implement data access and data binding (20–25%) 

Access data by using Entity Framework (EF) 

 access data by using EFCore with SQLite, implement a local SQLite database 

Implement the {Binding} extension 

Implement the {x:Bind} extension 

Implement MVVM classes and class interactions 

 implement event binding by applying command patterns, implement a Dispatcher to 

update the UI thread with async return data 



Implement app-to-app communications 

 integrate a Share contract to share content with another app, integrate drag-and-drop, 

launch an app for results, implement app extensions, implement App Services 

Implement REST Web Services 

 implement JSON and data serialization, access cloud data and Web APIs by using 

HttpClient 

Implement file system access 

 manage storage by using StorageFile, StorageFolder, and StorageItem; access a file 

location by using FilePickers; implement data roaming and roaming folders 

Implement feature detection for adaptive coding (10–15%) 

Implement API detection within adaptive code 

Implement Type detection within adaptive code 

Implement supported capabilities 

 implement support for a microphone, implement support for a webcam, implement 

support for location, implement support for enterprise authentication 

Manage user input and custom user interactions (10–15%) 

Implement command bars, flyouts, and dialogs 

 implement command bars and AppBarButton buttons, implement context menus and 

menu flyouts, implement content dialogs, display a tooltip by using ToolTipService, 

display a pop-up menu, implement control over app settings 

Implement support for traditional and touch input devices 

 support touch input, support mouse input, support keyboard and virtual keyboard input 

Implement speech and voice commands 

 support speech synthesis, support speech recognition, support Cortana integration, 

support Personal Assistant Launch capability, support voice commands 

Implement alternative forms of input 



 implement inking, implement camera input, implement location services and GPS input 

Manage authentication and identity management (10–15%) 

Implement authentication using Web Authentication Broker 

 implement web service authentication, implement OAuth, implement Azure Active 

Directory authentication 

Manage credentials securely with Credential Locker 

Implement two-factor authentication 

 implement two-factor authentication using Microsoft Passport, implement two-factor 

authentication using Windows Hello 

Implement notifications, background tasks, and reusable components 

(15–20%) 

Create and consume class libraries and Windows Runtime components 

 develop Windows Runtime components, develop class libraries, integrate class libraries 

and Windows Runtime components 

Implement tile and toast notifications 

 implement adaptive and interactive toast notifications, implement local tile notifications 

Create and register a background task 

 create a background task project and reference the background task within a project, 

implement background task event triggers and conditions 

Implement and manage a background task 

 monitor background task progress and completion, manage task lifecycle, share data 

and events between an app and its background tasks, call a background task directly 

Create and consume a Universal Windows Platform (UWP) app service 

 specify the AppService extension, implement app service as a background task, deploy 

the app service provider, call app services 


