

InRule® for Microsoft Dynamics 365

Deployment Guide

Document Updated against InRule v5.5.1

Document Updated against InRule for Microsoft Dynamics 365 Integration Framework v2.3.15

Document Updated against Microsoft Dynamics 365 v9.0 online, v9.0 on-prem

InRule does not upgrade this document after each Integration Framework release, please see release notes for

individual versions if the version that you are using does not match the versions listed above.

If you are working with earlier versions of any of the above products, the information in this document may not apply

to you. Please check to see if earlier documentation is available to cover your needs.

CONFIDENTIAL Any use, copying or disclosure by or to any other person than has downloaded a trial version of InRule or signed

an DNA is strictly prohibited. If you have received this document by any other means than a download or an email from an InRule

employee, please destroy it retaining no electronic or printed copies.

© Copyright 2020 InRule Technology, Inc.

Microsoft®, Microsoft Dynamics® and the Microsoft Dynamics Logo are registered trademarks of Microsoft Corporation.

All rights reserved. No parts of this work may be reproduced in any form or by any means – graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems – without the written permission from InRule

Technologies, Inc.

InRule, InRule Technology, irAuthor, irVerify, irServer, irCatalog, irSDK and irX are registered trademarks of InRule Technology,

Inc. All other trademarks and trade names mentioned herein may be the trademarks of their respective owners and are hereby

acknowledged.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility

for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs

and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other

commercial damage caused or alleged to have been caused directly or indirectly by this document. The publisher and author

reserve the right to make corrections, updates, revisions, or changes to the information contained herein. InRule Technology, Inc.

does not warrant the material described herein to be free from patent infringement.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 2 of 112

Table of Contents

Table of Contents .. 2

1 Introducing InRule® for Microsoft Dynamics 365 .. 4

2 Understanding your options .. 5

2.1 Microsoft Dynamics 365 (Online) – PaaS with Microsoft Azure ... 5

2.2 Microsoft Dynamics 365 (On Premise) – Local IIS or Azure IaaS .. 6

2.3 Other Integration Options .. 6

3 Performing the Installation: In Azure ... 7

3.1 An overview of the Components needed .. 7

3.2 Gathering prerequisites ... 9

3.3 Deploying and Configuring Components .. 14

3.3.1 Catalog App Service ... 14

3.3.2 Registering an Azure Active Directory Application (Optional) ... 17

3.3.3 Rule Execution App Service for Dynamics 365 .. 19

3.3.4 Upload License file .. 27

3.3.5 Rule Services Solution for Dynamics 365 ... 28

4 Performing the Installation: On-Premises ... 37

4.1 An overview of the Components needed .. 37

4.2 Gathering prerequisites ... 38

4.3 Deploying and Configuring Components .. 40

4.3.1 Setting Up an Application Pool in IIS ... 40

4.3.2 Setting Up the IIS Site for the Rule Execution Web Service .. 43

4.3.3 Deploy the Rule Execution Web Service ... 46

4.3.4 Rule Services Solution for Dynamics On-Prem Deployment ... 48

Appendix A: Additional Resources ... 53

InRule’s Support Website .. 53

InRule’s Support Team ... 58

InRule’s ROAD Team .. 58

InRule Training Services ... 58

Appendix B: Anatomy of a Request for Execution of Rules Diagram ... 59

Appendix C: irX General Integration Concepts ... 60

Appendix D: Accessing Dynamics 365 Directly from Rule Helper .. 61

Appendix E: Methods for Executing Rules from Dynamics 365 ... 70

1 Plugin Events .. 72

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 3 of 112

2 Run Rules Button .. 74

3 Workflow Activity ... 77

4 Form Events .. 77

5 Custom JavaScript .. 81

6 Custom Action ... 82

Appendix F: Rules Configuration and Settings ... 83

Appendix G: Endpoint Override Configuration .. 92

Appendix H: Azure App Service Plan Configuration ... 94

Appendix I: Dynamics 365 Tracing and InRule Event Logging ... 96

Appendix J: Activating Your License Keys .. 105

Appendix K: Upgrading Versions .. 108

Appendix L: Known Issues, Limitations and Troubleshooting .. 110

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 4 of 112

1 Introducing InRule® for Microsoft Dynamics 365

InRule provides the InRule for Microsoft Dynamics 365 Integration Framework to enable rule execution

integration with Microsoft Dynamics 365. This integration framework serves as a runtime companion to

the irX® for Microsoft Dynamics 365 Product.

This guide focuses on the deployment of the Rule Execution Services for Dynamics and corresponding

Dynamics Rule Services Solution to your environment. The InRule Dynamics Solution may be deployed

directly from the Microsoft AppSource or from the Integration Framework zip file downloaded from the

InRule Support Site. This guide details the primary deployment paths for cloud-based integration in

Microsoft Azure® as well as on-premise Dynamics.

Before beginning this guide, you may first want to familiarize yourself with the irX for Microsoft Dynamics

365 product by reading the irX for Microsoft Dynamics 365 Help Documentation. This irAuthor extension

will allow you to author rules against Dynamics entities and become familiar with the types of rules-driven

processes that can be implemented. After testing locally from your desktop using irVerify, the rules will be

ready for execution from Dynamics. At this point, this guide will become highly relevant for deploying the

InRule solution and services and establishing the selected integration patterns.

There are a number of options available when it comes to choosing how to integrate InRule with

Dynamics 365. This document also provides an addendum, Appendix E: Methods for Executing Rules

from Dynamics 365 that discusses the different options available to you for running rules beyond what the

primary deployment steps covers. It is a good next step to review for implementers who are looking for

advanced options for running rules.

Additional material is available on the Downloads section of our support website. Please see the

Additional Resources section of this document for support website detail.

https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview
https://support.inrule.com/downloads.aspx

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 5 of 112

2 Understanding your options

Microsoft Dynamics 365 is available through Microsoft as both an Online SaaS option, and as a

downloadable software product that can be installed on either an on-premises environment or through a

third party cloud or hosting provider in an IaaS manner with Virtual Machines.

2.1 Microsoft Dynamics 365 (Online) – PaaS with Microsoft Azure

If you are using Microsoft Dynamics 365 (Online), you will be hosting InRule using a Platform-As-A-

Service (PaaS) model on Microsoft Azure. When setting up the InRule App Services, ensure that all

Azure components and the Dynamics installation are in the same geographical location to reduce timeout

exceptions due to network latency.

This document discusses the following four components:

1. Catalog App Service and Azure SQL Database

2. Azure Service Bus Relay

3. Rule Execution App Service for Dynamics 365

4. Rule Services Solution for Dynamics 365

InRule for Dynamics Deployment

(Solution, Plugin, Endpoint, Steps)

Azure Service Bus

Rule Execution Azure App Service for Dynamics

Catalog App Service and Azure SQL Database

Microsoft Dynamics 365 (Online) Instance

Microsoft Dynamics 365 (Online) – PaaS with Microsoft Azure

Microsoft Azure Subscription

Section 3 of this document, Performing the Installation: In Azure, provides a complete walkthrough.

Appendix B: Anatomy of a Request for Execution of Rules Diagram contains a more complete diagram

depicting how a standard request navigates through components.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 6 of 112

2.2 Microsoft Dynamics 365 (On Premise) – Local IIS or Azure IaaS

If you are using Microsoft Dynamics 365 (On premise) or plan to deploy to the cloud using an

Infrastructure-As-A-Service (IaaS) model, you will be hosting our integration framework via Internet

Information Services (IIS) on a Window Server OS. This document discusses the following 3 components:

1. Catalog Web Service and Database

2. Rule Execution Web Service for Dynamics 365 On-Premises

3. Rule Services Solution for Dynamics 365 On-Premises

Section 4 of this document, Performing the Installation: On-Premise,Performing the Installation: On-

Premises, provides a complete walkthrough.

2.3 Other Integration Options

You are welcome to look at alternate integration options. Here are some possible integration options that

you may pursue:

• Integration with Microsoft Dynamics 365 (Online) without the use of an Azure Service Bus.

• Integration with Microsoft Dynamics 365 (Online) utilizing IaaS options instead of Azure’s PaaS

options.

• Integration with Microsoft Dynamics 365 (On premise) against Azure PaaS hosted InRule

components. If this is your preferred approach, an on-premisess Dynamics installation will work

off the shelf with the inRule installation instructions in the “Performing the Installation: In Azure”

section of this document.

While all of these are possible routes, they will not work with the Integration Framework we provide off the

shelf. As such, we strongly encourage that you follow the model outlined in this guide to start with, until

you’ve acquired a more advanced understanding of how all of the pieces of the InRule® for Microsoft

Dynamics 365 Integration Framework work together to provide a solution.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 7 of 112

3 Performing the Installation: In Azure

This section discusses the steps needed to integrate InRule with Microsoft’s online version of Microsoft

Dynamics 365. Using this scenario InRule components are hosted on Microsoft Azure.

3.1 An overview of the Components needed

This guide will provide the instructions for setting up all of the components below:

Dynamics CRM
Online

Server(s)

Rule Execution Azure
App Service for

Dynamics

Azure Service
Bus

Custom
Plugin or
Activity

InRule Rule Catalog as
Azure App Service +

SQL Azure

CRM Service
Endpoint

SQL Azure
Catalog DBRule Authoring in

irAuthor using InRule for
Dynamics CRM

HTTPS

HTTPS HTTPS

HTTPS

HTTPS

SSL

Web Browser
 Org

 Service
 Execute or
CRUD event

 AJAX HTTPS
POST for Rules

 Full Page
HTTPS GET/POST

Batch Processor
(or other clients)

HTTPS POST
for Rules

Catalog App Service and Azure SQL Database

A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution App

Service. This Catalog Service will be hosted as an Azure App Service. The back end of the Catalog

Service utilizes an Azure SQL Database for retrieval and persistence of Rule Applications.

Azure Service Bus Relay

Dynamics 365 is designed to communicate to third party services through an Azure Service Bus. Utilizing

an Azure Service Bus is the preferred communication mechanism allowing for security and quick

horizontal scaling of services. The Rule Execution App Service connects to the Service Bus and registers

itself as a Relay listener. When Dynamics 365 makes a request to the Service Bus, the Service Bus

relays that message to a listener and allows for two-way communications for as long as the connection is

open.

The InRule Rule Execution App Service leverages a specific kind of Service Bus called Azure Relay.

Within the context of the InRule architecture, the Relay performs the same function as a “traditional”

Service Bus, but includes some extra functionality specific to WCF relays. For the sake of consistency

with Microsoft’s Dynamics documentation, we will refer to the Relay as a Service Bus throughout this

document. However, be aware that they are different resource types within Azure itself.

Rule Execution App Service for Dynamics 365

The Rule Execution App Service is responsible for loading Dynamics entity data, executing rules against

loaded data, and responding to Dynamics with rule execution results.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 8 of 112

Rule Services Solution for Dynamics 365

The Rule Services Solution contains a custom plugin, an endpoint, client resources, a configuration form,

and a security role called InRule Integration Administrator. It must be configured to communicate with the

Azure Service Bus.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 9 of 112

3.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in

the next section.

Required Files

The following file should be downloaded from our support website’s downloads section before you begin:

• InRule for Microsoft Dynamics 365 Integration Framework.zip

After you have downloaded this file, but before extracting, make sure that you go to the file properties for

the zip and select Unblock. If the zip file is not unblocked before extracting, the deployment scripts will

not be able to execute successfully.

After unblocking the zip file, extract the contents to a working folder. When you are finished, you should

have a directory structure that looks like this:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 10 of
112

Files in bold will be used directly in the walkthrough steps below.

│ InRule For Microsoft Dynamics CRM Integration Framework.zip

│

└───InRule For Microsoft Dynamics CRM Integration Framework

 │ readme.txt

 │

 ├───DynamicsDeployment

 │ │ Deploy-CrmPackage.ps1

 │ │ ...(many other supporting files)

 │ │

 │ ├───PkgFolder

 │ └─ ...(many other supporting files)

 │

 ├───RuleApplications

 │ DynamicsRules.ruleapp

 |

 ├───RuleExecutionAzureService

 │ Register-AzureApp.ps1

 │ InRule.Dynamics.Service.json

 │ InRule.Dynamics.Service.parameters.json

 │ InRule.Crm.WebJob.zip

 |

 ├───RuleExecutionOnPremService

 │ DeployScript.ps1

 │ InRule.Crm.WebService.deploy-readme.txt

 │ InRule.Crm.WebService.SetParameters.xml

 | ...(many other supporting files)

 │

 └───RuleHelperDeployment

 │ InRule.Crm.RuleHelper.dll

 └─ ...(many other supporting files)

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 11 of
112

Rule Authoring Environment

A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule

Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for

Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics

365 Help Documentation then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to

be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX

for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who

does not intend to perform rule authoring duties after the deployment is up and running, you can either

chose to borrow an environment from someone who will use a rule authoring environment, or you will

want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts

Dynamics 365 Organization Service URI: You will want to have the root URL of the organization web

service exposed by your Dynamics 365 instance. The server URL is usually in the format of

“https://organization-name.crm.dynamics.com”

Dynamics Service Account Login and Password: You will want to have a username and account

created specifically for use by the InRule for Microsoft Dynamics 365 Framework App Service. This

account should have the ‘System Administrator’ role as it is continually updated with permission to new

entities when they are created. Alternatively, this user can have another security role such as the ‘InRule

Integration Administrator’ which is included in the InRule solution. If an alternate role is used, it is

important to note that its permissions are not dynamically updated and will have to be done manually.

This user account will not be needed if you decide to create an S2S user account outlines in Section

3.3.2: Registering an Azure Active Directory Application (Optional) of this document.

Administrative Password to use for SQL Server: You should decide what username and password

you want to use for administrative privileges on the SQL Server. You will use this password when

following the referenced catalog setup guide.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to

connect to the SQL Server Database. In a more secure environment, a separate SQL User should be

created that only has access to the single database needed by the catalog. It is up to the reader of this

document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and

password you want to use for administrative privileges within irCatalog. You will use this password when

following the referenced catalog setup guide and will need to provide it when deploying the Execution

Service.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the

reader to go through the process of utilizing the Catalog Manager to change these credentials to be more

secure.

Administrative Login and Password for Microsoft Azure: You must have a username and password

that will be used to perform administrative tasks within Microsoft Azure.

InRule Azure License File

https://organization-name.crm.dynamics.com/

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 12 of
112

You will need a special .xml file used for licensing InRule in an Azure cloud environment. This may have

been provided with your InRule Welcome package. You can contact support@InRule.com if you have

questions about where to get your license file.

mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 13 of
112

Deciding resource names

The following worksheet can be used to decide what to name Azure resources as you go through this

Guide.

Many of these resources must have names that are unique in the world; they are hosted on Microsoft

Azure and are given domain names that match. We recommend creating a “Base” name that does not

exceed 14 characters. We recommend encoding an organization name, an application name, and an

environment name into this ‘Base’ name. For Example:

{ApplicationAbbreviation}{OrganizationAbreviation}{EnvironmentAbreviation}

MyAppInRuleDev

12345678901234

You can choose to follow this convention or invent your own.

Resource and Description

Example Name

Base Name

MyAppInRuleDev

Azure Resource Group Name

MyAppInRuleDevResourceGroup

Azure SQL Server Name
must be lower case

myappinruledevsqlserver

Catalog Database Name

MyAppInRuleDevCatalogDb

Catalog App Service Name

MyAppInRuleDevCatalogService

Service Bus Namespace

MyAppInRuleDevServiceBus

Rule Execution App Service Plan Name

MyAppInRuleDevRuleExecutionAppServicePlan

Rule Execution App Service Name

MyAppInRuleDevRuleExecutionAppService

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 14 of
112

3.3 Deploying and Configuring Components

3.3.1 Catalog App Service

Installing the Catalog App Service

The first major objective for a Dynamics 365 implementation is the deployment of a Catalog service to

Microsoft Azure.

During this process, you will be creating:

• An Azure SQL Server

• An Azure SQL Server Database

• An Azure App Service to host the InRule Catalog in the Azure cloud

When you are finished, you should be able to connect to this app service from a locally installed copy of

irAuthor, and successfully save a RuleApp to the catalog.

The full process of installing the Catalog in Microsoft Azure is outlined in the documentation found on the

InRule AzureAppServices GitHub, which can be found here:

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

Please ensure you are installing the irCatalog service, not the irServer Rule Execution Service, which is

found on the same page and is not compatible with Dynamics 365 integration.

Testing the Catalog App Service by uploading the starter Rule App

At the conclusion of the installation process outlined above you should have a Catalog URI, Username,

and Password to use to connect to the catalog service.

Next we will utilize your rule authoring environment to upload the Rule Application that you extracted into

your working directory at:

\InRule for Microsoft Dynamics 365 Integration Framework\Rule Applications\DynamicsRules.ruleapp

1: Navigate to this file in your rule authoring environment and double click on it,

this will open the file with irAuthor.

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 15 of
112

2: Save the Rule Application by chosing File → Save As →Save to Catalog

3: Choose Add Catalog, enter connection information for the Catalog Server that

you deployed, and then select Use This.

4: Save with the name DynamicsRules and the Label LIVE

Save the Rule Application to the Catalog using the name of DynamicsRules. We must also be sure to

label this Rule Application with the text ‘LIVE’, as configured in the app service configuration. Be sure not

to forget this label, it is a small but important step!

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 16 of
112

At this point, if you can click OK without an error, we have successfully saved the DynamicsRules Rule

App to the new Catalog that you have created. We can now continue by creating the Service Bus

Namespace.

If you have any trouble getting to this point, it is advised that you resolve any issues with the Catalog

before attempting to continue.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 17 of
112

3.3.2 Registering an Azure Active Directory Application (Optional)

This section is only necessary if you intend to leverage a server-to-server (S2S) connection between the

rule execution service and your Dynamics environment. Server-to-server authentication uses a Dynamics

Application User associated to an Azure AD Application for authentication instead of a named user

account. This approach can be beneficial as it allows Dynamics integration with InRule without having to

purchase an additional full user. Additionally, this will save you from needing to store Dynamics user

passwords in Azure. For more information about server-to-server authentication, please refer to the

following link: https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-

applications-server-server-s2s-authentication

If you do not want to use server-to-server authentication, you can skip this section and connect with a

named user account and Dynamics connection string instead.

Be sure to reference Appendix L: Known Issues, Limitations and Troubleshooting of this document for

considerations regarding the user account and permissions created with this approach.

Registering an Azure AD application is fully automated in the Register-AzureApp.ps1 PowerShell script

included in the RuleExecutionAzureService folder within the InRule for Microsoft Dynamics 365

Integration Framework.zip file downloaded in Section 3.2: Required Files.

This script requires the Azure AD PowerShell module to be installed on the computer before running the

script. If this module is not yet installed, you can install it by opening an admin PowerShell window and

executing ‘Install-Module AzureAD`.

1: Navigate to the \RuleExecutionAzureService directory:

2: Execute Register-AzureApp.ps1

The script accepts the parameters “Username” and “Password,” which need to be credentials for an

Azure Active Directory Global Administrator. Alternatively, you can run the script without passing in any

credentials, and the script with prompt you with an interactive login.

By default, the application is registered in the primary directory the user account belongs to. If the app

needs to be registered in a different Azure Active Directory tenant, you can pass in the tenant ID with the

optional “TenantId” parameter.

Without a TenantId passed:

With an example TenantId passed:

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-authentication
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-authentication

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 18 of
112

Observe that no errors occur while the application registration script is running.

When finished, the script will output three values: The application name, application ID, and the secret

key. Save these 3 values, particularly the secret key, as there will be no way to retrieve this later. The

application ID will be needed when deploying the Rule Execution package, and both the Application ID

and Key will be needed when deploying the Rule Execution App Service.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 19 of
112

3.3.3 Rule Execution App Service for Dynamics 365

Next, we’ll deploy the InRule Rule Execution service as an Azure WebJob running on an App Service,

along with all its Azure resource dependencies. To make this process easier, we’ll be using an Azure

Resource Manager (ARM) template, which allows us to deploy and configure all the Azure resources the

Rule Execution Service relies on.

There are a number of methods for deploying an ARM template; this documentation will detail two: via

Azure CLI and via PowerShell.

1: Locate azuredeploy.parameters.json

Before deploying the ARM template, we need to define certain parameters.

Locate the azuredeploy.parameters.json file in the RuleExecutionAzureService folder within the InRule for

Microsoft Dynamics 365 Integration Framework.zip file downloaded in Section 3.2: Required Files.

2: Update parameters

Open the file with your text editor of choice and edit the parameters listed below

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 20 of
112

1 appServiceName Provide a name for the Azure App Service that the Rule Execution Service will run on.

2 relayName Provide a name for the Azure WCF Relay (aka Azure Service Bus). This is NOT the desired
namespace URL for the Relay, it should be the desired name of the actual Azure resource.

3 catalogUri The URI for the Catalog Service that will be used
Example:
https://myappinruledevcatalogservice.cloudapp.net/service.svc

4 catalogUser Username for Catalog Service, default value is ‘admin’.

5 catalogPassword Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

6 orgUrl (If using named user account
authentication instead of S2S
authentication, leave blank)

The root URL for the Dynamics 365 instance.
Follows this format: https://organization-name.crm.dynamics.com
If using named user account authentication instead of S2S authentication, leave this blank.
The Dynamics Org URL will be defined as a part of the crmConnectionString parameter
instead.

7 appId (If using named user account
authentication instead of S2S
authentication, leave blank)

ID for the Azure Active Directory application registered in Registering an Azure Active
Directory Application. If using connection string instead of S2S authentication, provide a
value for the crmConnectionString parameter instead

https://myappinruledevcatalogservice.cloudapp.net/service.svc
https://organization-name.crm.dynamics.com/

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 21 of
112

8 appSecret (If using named user
account authentication instead of S2S
authentication, leave blank)

Key secret for the Azure AD app registered in Registering an Azure Active Directory
Application. If using named user account authentication instead of S2S authentication,
provide a value for the crmConnectionString parameter instead

9 crmConnectionString (If using
S2S authentication, leave blank)

Provide a Dynamics connection string if you are not using S2S authentication, otherwise
leave blank. Information on connection string formatting can be found here:

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-
tooling/use-connection-strings-xrm-tooling-connect

The account used here should have the ‘System Administrator’ role or the ‘InRule
Integration Administrator’ role. It is important to note that the ‘InRule Integration
Administrator’ role is not updated when new entities are created. Reference Appendix L:
Known Issues, Limitations and Troubleshooting for more information.

Important: Some customers have reported needing to provide a username in the
format “domain\username” in order to successfully connect using IFD.

10 appServicePlanName This is an optional parameter, that, if left blank, will result in the ARM Template creating an
AppServicePlan for you, using your defined appServiceName and appending “Plan” to the
end. For example, defining your appServiceName as “ExampleAppService” would yield the
following automatically generated App Service Plan name: “ExampleAppServicePlan.”

This parameter is intended to be used if you wish to either have a new AppServicePlan be
created using a different name than the one outlined above, or for defining the name of a
pre-existing App Service Plan that you would like to create your resources under. In the
latter case, additional steps are required. For a more comprehensive guide on how to
deploy your resources under an existing AppServicePlan, refer to Appendix H: Azure App
Service Plan Configuration

10 inRuleVersion (To deploy most
modern version, leave as default
value)

This parameter allows the user to configure what version of the InRule Rule Execution
Service they wish to deploy. By default, this parameter will be set to the most modern
version.

11. appServicePlanName (If you
wish to override the default value)

Provide a name for the Azure App Service Plan. If you leave this value blank it will be
derived as the App Service name you provide above, with “Plan” appended to the end (ex.
appServiceNamePlan)

Note, by default, an App Service Plan will be created by the ARM template. If you wish to
deploy your app service to an already existing App Service Plan rather than create a new
one, or for more information on the necessary configurations for the App Service Plan,
reference Appendix H: Azure App Service Plan Configuration

12. appInsightsInstrumentationKey If you want to use Application Insights as a log sink in addition to the app service logging
already enabled, provide an instrumentation key from an existing Application Insights
resource here. When providing a value for the ‘appInsightsResourceName’ parameter,
leave this value blank, as the template will automatically fill this value in for you based on
the newly created resource Rule Execution Service Event Log.

13. appInsightsResourceName If you want to use Application Insights as a log sink in addition to the app service logging
already enabled, but do not already have an Insights resource that you want to use, specify
a name for a new resource here. Specifying a value for this parameter will create a new
Application insights resource with the given name and populate the instrumentation key app
setting on the app service with the key from this new resource. If you provide a value for
this parameter, do not provide a value for appInsightsInstrumentationKey. If you
receive an error about the location when deploying the template, refer to Application
Insights Location Error

3: Option 1: Deploy ARM Template with Azure CLI

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use the Azure CLI to deploy the ARM template (Note, this section assumes

Azure CLI has already been installed):

3.1 Run Command Prompt or Powershell

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 22 of
112

3.2 Navigate to the RuleExecutionAzureService folder

3.3 Enter “az login” to login into Azure

3.4 Enter your Azure admin credentials to login when prompted in the

new browser window opened

3.5 Select the appropriate subscription

If your Azure account has access to multiple subscriptions, you will need to set your active

subscription to where you create your Azure resources:

3.6 Create Resource group

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

3.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 23 of
112

Observe that the template deploys with no errors

If the template deploys successfully, you will see a result that looks similar to this:

The value that is output is your Azure Service Bus key, which is a value you will need to configure

your Dynamics instance in a later step.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 24 of
112

4: Option 2: Deploy ARM Template with Powershell

(If you have already deployed the ARM template via Azure CLI in the section above, this section is not

necessary)

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use Powershell to deploy the ARM template (Note, this section assumes Azure

PowerShell has already been installed):

1.1 Run Powershell

1.2 Navigate to the RuleExecutionAzureService folder

1.3 Enter “Connect-AzureRmAccount” to login into Azure

1.4 Enter your Azure admin credentials to login when prompted in the

new browser window opened

1.5 Select the appropriate subscription

Upon logging in, your default subscription information will be displayed:

If this is not the subscription you want to deploy to, you can use the “Select-AzureRmSubscription”

cmdlet to change the targeted subscription. Just replace “SubscriptionNameHere” with the name of

the desired subscription:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 25 of
112

4.6 Create Resource Group

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

4.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

If the deployment is successful, you should see an output similar to this:

Note the value of “relayKey” underneath the “Outputs” heading. This value is your Azure Service Bus

key, and will be needed when configuring your Dynamics instance in later steps.

5: Verify Setup

Navigate to the Azure portal and locate the deployed App Service

Click on the app service, and on the nav-bar that appears to the left of the resource overview, select

WebJobs

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 26 of
112

Ensure the InRule.Crm.WebJob is present and its “Status” is set to “Running”

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 27 of
112

3.3.4 Upload License file

Regardless of how you choose to deploy the ARM template, you’ll need to upload a license file to the web

app service in order for both the catalog service and the rule execution app service to properly function.

The simplest way to upload the license file is via FTP.

This example leverages Azure CLI in addition to Powershell commands. If you intend to use this

method, please run the CLI from Powershell.

Alternative approaches using Powershell only should be possible if desired but are not detailed in

this document.

First, retrieve the FTP deployment profile (url and credentials) with the az webapp deployment list-

publishing-profiles command and put the values into a variable:

Example: az webapp deployment list-publishing-profiles --name contoso-execution-
prod-wa --resource-group inrule-prod-rg --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

az webapp deployment list-publishing-profiles --name WEB_APP_NAME --resource-group
RESOURCE_GROUP_NAME --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

Then, upload the license file using those retrieved values:

Example:
$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,
"$pwd\InRuleLicense.xml");

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,
"LICENSE_FILE_ABSOLUTE_PATH")

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 28 of
112

3.3.5 Rule Services Solution for Dynamics 365

At this point, all of the Azure Requirements are met. The Azure Service bus should be listening for

incoming communication from Dynamics. We must now setup Dynamics, which can be done in one of two

ways:

1. AppSource Deployment -- You can install the Rule Services Solution through Microsoft

AppSource. The InRule AppSource listing can be found by going to AppSource and searching for

InRule. Proceed to Step 4 in the following instructions after installing from AppSource.

2. PowerShell Deployment -- You can follow the guide below to deploy the Dynamics package via

PowerShell script.

3. Important: You only need to deploy the Rule Services Solution by one of the two above

methods. Doing both is unnecessary.

4. Important: Only deploy the solution using one of the two above methods. Do not manually import

included solution files.

1: Navigate to the ‘\DynamicsDeployment’ directory:

2: Execute Deploy-CrmPackage.ps1

Deploy-CrmPackage.ps1

If you are using S2S authentication in the execution service, you will need to pass in your Azure Active

Directory application ID as the “AzureAppId” parameter to the Deploy-CrmPackage.ps1 script. This is the

application ID that was output in Section 3.3.2, and will be used to create a new Application User in

Dynamics. If you were not involved in registering your Azure Active Directory application, your Azure

administrator should be able to provide you with this ID. If you are using connection-string based

authentication in the execution service, you do not need to provide this parameter.

Additionally, the script supports 2 other parameters: “SbNamespaceAddress” and “SasKey”. These

parameters allow you to pass in the fully qualified Service Bus Namespace Address

(e.g.: https://<<ServiceBusNamespace>>.servicebus.windows.net/<<SB Relay Path>>) and Service Bus

Key for the Service Bus your Rule Execution App Service is listening on and will allow the script to auto-

configure your Dynamics instance to point at that Service Bus. These parameters operate independently

of the “AzureAppId” parameter; they may be alongside it or on their own. However, if you opt to provide a

value for either “SbNamespaceAddress” or “SasKey,” you must provide a value for the other as well.

https://appsource.microsoft.com/en-us/?product=dynamics-365-business-central%3Bdynamics-365-for-customer-services%3Bdynamics-365-for-field-services%3Bdynamics-365-for-finance-and-operations%3Bdynamics-365-for-project-service-automation%3Bdynamics-365-for-sales

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 29 of
112

If you choose not to provide the “SbNamespaceAddress” and “SasKey” parameters, you will receive a

notification (shown below) after the script finishes executing reminding you that you need to manually

configure the SAS Namespace and SAS Key as outlined in Step 4 of this section.

3: Provide Dynamics 365 Service Credentials

By default, the script will display an interactive login window to connect to Dynamics. Please be sure to

check the ‘Display list of available organizations’ to make sure that you select the correct instance of

Dynamics to install to!

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString

'AuthType=Office365;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Pa

ssword={DYNAMICSPASSWORD}'

Observe that no errors occur while the Deploy Script is running.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 30 of
112

4: Configure the Rule Services Solution in Dynamics

Next, we need to configure the Dynamics Solution that has been deployed to point to the Rule Execution

Service that is already available on Azure. We will need to have the Service Bus Namespace and the

Service Bus Key (SAS Key) ready for this step. You can find more information about these settings in the

Rule Execution App Service for Dynamics 365 section.

Navigate to the Rules Configuration page:

You will need to define values in the following fields.

Configuration
Form Fields

Details on these settings are found in “Rule Execution App Service for
Dynamics 365” section.

Endpoint Name For basic configuration, this can be left as is.

SAS Key Name The key output by the ARM template is the ‘RootManageSharedAccessKey’ key,
so this value can be left as the default in most scenarios.

SAS Key This is the key secret value, and is output by the ARM template after completion
of the deployment

Note: If you provided the “SasKey” parameter in Step 2 of this section, this
value will already be set.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 31 of
112

Azure SB
Namespace
Address

Change the service bus namespace here, as the default value of ‘inrule-
crmonline’ will not work for you. The service bus namespace is the same value
provided for the relay name in the ARM template parameters file.

Using the Service Bus Namespace and the Service Bus Path, construct the
address as follows:
https://<<ServiceBusNamespace>>.servicebus.windows.net/<<SB Relay Path>>

Note: If you provided the “SasName” parameter in Step 2 of this section,
this value will already be set.

SB Relay Path Unless you have changed the corresponding setting in rule execution app service,
this value can be left as the default, which is ‘ruleexecution’

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 32 of
112

The following screenshots show the Service Endpoint Configuration screen before and after

configuration.

• [#1 in screenshot] SAS Key Name

• [#3 in screenshot] SAS Key

• [#4 in screenshot] Azure SB Namespace Address

• [#5 in screenshot] SB Relay Path

Please note that you must click on ‘SET’ [#2 in screenshot] before the SAS Key can be entered.

For a more complete description of all of the configuration options available, reference Appendix F: Rules

Configuration and Settings

Notice: If you are using the standard Azure US environment ‘AzureCloud’, then the provided domain

suffix will work fine. However, if you are using an alternate Azure Environment such as US Government or

an international environment – be sure to update the suffix to the appropriate value for your region.

Be sure to click save, and to observe the “Saved Changes” notice:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 33 of
112

5: Manually Configuring S2S Authentication for AppSource

Deployments

When deploying the solution via AppSource, the creation of the Application User that is used by S2S

Authentication between the Rule Execution Service and the Dynamics Rule Services Solution must be

manually configured if desired. S2S Authentication is for single tenant AzureAD applications only.

1. Important: These steps are only necessary for users that have deployed via AppSource and

want to leverage S2S authentication with a single tenant Azure AD application.

5.1: Navigate to Settings > Security:

5.2: Select Users:

5.3: Toggle to the Application Users View:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 34 of
112

5.3: Select New, and Toggle to Application User

5.4: Populate the Application ID based on the configured S2S Application

(as outlined in section 3.3.2)

5.5: Populate the Username, Full Name and Primary Email with NEW

account info for what the App User should be called

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 35 of
112

5.6: Click “Save”

5.7: Click “Manage Roles” in the top menu bar

5.8: Tick the box for "InRule Integration Administrator" role and click OK

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 36 of
112

6: Verify a successful deployment!

A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves

will depend on the settings that have been configured under the Rule Configuration section; this

document assumes the default configuration behavior. To understand what settings are available and

what they mean, please see Appendix F: Rules Configuration and Settings of this document.

Open up an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App

from the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog

stage. If everything has been set up correctly, you should see the “Rule Execution Completed” message

and the description of the account will be updated to provide the date and time.

If there are any issues with executing rules and you are using an S2S user account from section 3.3.2,

check Appendix L: Known Issues, Limitations and Troubleshooting of this document. If you are using the

connection string, make sure the user account specified has the necessary privileges to access the

particular entity. In most applications, the user account used in the connection string has the role of

‘System Administrator’. This security role is automatically updated with permission when new entities are

created. If the user account has the role ‘InRule Integration Administrator,’ it is important to note that the

permissions of the role are only updated when the InRule solution is deployed. Adding permission for new

entities will have to be done manually.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 37 of
112

4 Performing the Installation: On-Premises

This section discusses the steps needed to integrate InRule with Microsoft’s on-premises version of

Microsoft Dynamics.

This section assumes that you already have an IIS web server and an on-premises version of Dynamics

deployed and configured.

4.1 An overview of the Components needed

Catalog Web Service and Database

A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution Service.

This Catalog Service will be hosted as a web service on an IIS server. The back end of the Catalog

Service utilizes a SQL Server or Oracle database for retrieval and persistence of Rule Applications. The

Installation Documentation and InRule Installer, which will be used to install the service itself, are

available on our support website’s downloads section provides instructions for setting up the catalog.

Rule Execution Web Service for Dynamics 365 On-Premises

The WCF Web Service implementation is designed to be generically applied to any given Dynamics Entity

and corresponding InRule rules that may apply to that Entity. After the web service is published, the

service can be directed to run various Rule Applications against different Entity types by passing

arguments in the REST calls. This will require a separate deployment than the Catalog Web Service; this

process will be covered in the “Deploy the Rule Execution Web Service” section.

Rule Services Solution for Dynamics 365 On-Premises

The RuleExecutionServices solution contains a custom plugin, client resources, and a configuration

form. Unlike the Online solution, this is configured to work directly against the execution service, rather

than requiring the “middle-man” of the Azure Service Bus.

Dynamics CRM
On Premise

Server(s)

Business Rule Service as
WCF REST Service

Custom
Plugin or
Activity

InRule Rule Catalog
Web Service

SQL Server or
Oracle

Catalog DB
Rule Authoring in

irAuthor using InRule for
Dynamics CRM

HTTPS

HTTPS

HTTPS

HTTPS

Web Browser
 Org

 Service
 Execute or
CRUD event

 HTTPS
POST for Rules

 Full Page
HTTPS GET/POST

Batch Processor
(or other clients)

HTTPS POST
for Rules

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 38 of
112

4.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in

the next section.

Required Files

The following files should be downloaded from our support website’s downloads section before you begin:

• InRule for Microsoft Dynamics 365 Integration Framework.zip

• InRule Catalog Installer – InRule Installer.exe

Please download and extract each of these archives to corresponding subdirectories within a working

folder.

When you are finished, you should have a directory structure that looks like this:

Files in bold will be used directly in the walkthrough steps below.

│ InRule For Microsoft Dynamics CRM Integration Framework.zip

│

└───InRuleForMicrosoftDynamicsCRMIntegrationFramework

 │ readme.txt

 │

 ├───DynamicsDeployment

 │ │ Deploy-CrmPackage.ps1

 │ │ ...(many other supporting files)

 │ │

 │ ├───PkgFolder

 │ └─ ...(many other supporting files)

 │

 ├───RuleApplications

 │ DynamicsRules.ruleapp

 |

 ├───RuleExecutionAzureService

 │ Register-AzureApp.ps1

 │ InRule.Dynamics.Service.json

 │ InRule.Dynamics.Service.parameters.json

 │ InRule.Crm.WebJob.zip

 |

 ├───RuleExecutionOnPremService

 │ DeployScript.ps1

 │ InRule.Crm.WebService.deploy-readme.txt

 │ InRule.Crm.WebService.SetParameters.xml

 | ...(many other supporting files)

 │

 └───RuleHelperDeployment

 │ InRule.Crm.RuleHelper.dll

 └─ ...(many other supporting files)

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 39 of
112

Rule Authoring Environment

A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule

Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for

Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics

365 Help Documentation, then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to

be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX

for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who

does not intend to perform rule authoring duties after the deployment is up and running, you can either

chose to borrow an environment from someone who will use a rule authoring environment, or you will

want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts

Dynamics On-Prem Organization Service URI: You will want to have the root URL of the organization

web service exposed by your Dynamics 365 instance. The server URL is usually in the format of

“http://crm-server:port/organization-name”

Dynamics Service Account Login and Password: You will want to have a username and account

created specifically for use by the InRule for Microsoft Dynamics 365 Framework Web Service.

Administrative Password to use for SQL Server: You should decide what username and password

you want to use for administrative privileges on the SQL Server. This walkthrough will construct a

connection string that will utilize these resources to connect to the catalog.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to

connect to the SQL Server Database. In a more secure environment, a separate SQL User should be

created that only has access to the single database needed by the catalog. It is up to the reader of this

document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and

password you want to use for administrative privileges within irCatalog.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the

reader to go through the process of utilizing the Catalog Manager to change these credentials to be more

secure.

InRule License Keys

You will need your InRule irServer license keys. These can be found at

https://support.inrule.com/activations.aspx. You can contact support@InRule.com if you have questions

about where to get your license keys. For guidance on how to activate your keys, reference Appendix J.

https://support.inrule.com/activations.aspx
mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 40 of
112

4.3 Deploying and Configuring Components

4.3.1 Setting Up an Application Pool in IIS

Before a website can be setup to host the catalog web service, a suitable application pool needs to be

created. Any IIS server will already have a DefaultAppPool that can be used; whether this section is

necessary will depend on your organizations architecture and requirements.

1: Open IIS Manager

2: Click on Application Pools on the left-hand nav pane

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 41 of
112

3: Click “Add Application Pool” under “Actions” in the right-hand

pane

4: Define a name for the Application Pool and Create

.NET CLR Version and Managed pipeline mode should be left as their default values. Press OK

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 42 of
112

5: Click on the new App Pool and Select “Advanced Settings” on the

right-hand pane

6: Under the “Process Model” header, select the small “…” button

next to the “Identity” property

Here you can select what kind of identity model you want to use for your application pool. You’ll want to

either use the Application Pool Identity or create a custom account.

The Application Pool Identity creates a virtual account with the same name as your new application pool.

All worker processes within this application pool will run under this account

Custom accounts are the best solution if you want to use your Windows credentials to authenticate to the

Catalog web service.

Press “OK” when you have made your selection and are finished.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 43 of
112

4.3.2 Setting Up the IIS Site for the Rule Execution Web Service

Next, we’ll need to setup a website in IIS to host the execution web service. This will require a Windows

Server with IIS installed.

1: Open IIS Manager

2: Click on sites on the left-hand nav pane

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 44 of
112

3: Click “Add Website” under “Actions” in the right-hand pane

4: Define website information

Define a site name, application pool and host name for the website; these can be configured however

makes sense within your organization.

The physical path needs to be set to the actual Dynamics Rule Execution web service folder. This will

require you having the InRule components downloaded onto the same server you are setting up the

website on

Lastly, select either HTTP or HTTPS, depending on which makes sense for your architecture. If you opt to

use HTTPS, you will be required to select a certificate before you can finalize the site.

Once you’ve populated all the required fields, press OK to finalize and start the website

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 45 of
112

5: Verify your website successfully created

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 46 of
112

4.3.3 Deploy the Rule Execution Web Service

1: Open your “RuleExecutionOnPremService” folder:

For guidance on how to find this folder, reference the “Required Files” section above. The folder will need

to be copied onto the IIS server you set up your website on in the previous section.

2: Open the InRule.Crm.WebService.SetParameters.xml file in

Notepad or a similar text editor

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 47 of
112

3: Change placeholder parameter values to real values

1 IIS Web Application Name The name of your IIS website as defined in the “Setting up the Catalog Web Service in IIS”
section

2 UseInRuleCatalog Defines if the catalog is being used to store rule apps. Set to true if using the catalog, and false if
using file system

3 CatalogUri The URI for the Catalog Service that will be used

4 CatalogLabel Defines the label text used to by the service to target the specific rule app in the catalog. Labels
are assigned to rule apps in the catalog

5 CatalogUser Username for Catalog Service, default value is ‘admin’.

6 Catalog Password Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

7 CatalogSSO Defines whether to use app pool identity to authenticate to the catalog web service

8 RuleAppDirectory Specifies the directory where rule apps will be stored if using file system instead of the catalog. If
using the catalog, leave as-is.

9 DynamicsCRM-Web.config
Connection String

Provide a Dynamics connection string if you are not using S2S authentication, otherwise leave
blank. Information on connection string formatting can be found here:
https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-
premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

Important: Some customers have reported needing to provide a username in the format
“domain\username” in order to successfully connect using IFD.

4: Save your changes

5: Launch PowerShell as an administrator

6: Navigate to the “RuleExecutionOnPremService” folder

7: Run the “DeployScript.ps1” file

Observe that no errors occur while this script does its work.

It is worth noting that when deploying plugins without isolation in an on-prem environment, Dynamics
requires that the user registering the plugin must be added as a Deployment Administrator from

https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 48 of
112

Deployment Manager. If the registering user lacks the proper permissions, when deploying the package
Dynamics will return an error stating “Assembly must be registered in isolation.”

4.3.4 Rule Services Solution for Dynamics On-Prem Deployment

At this point, all of the InRule server components are setup. The rule execution service should be listening

for incoming communication from Dynamics. We must now setup Dynamics. To make this process easier,

we will be using PowerShell.

1: Launch PowerShell as an administrator:

2: Navigate to the ‘\Dynamics Deployment’ directory:

3: Execute Deploy-CrmPackage.ps1

For Dynamics On-Prem v9, run Deploy-CrmPackage.ps1 with the added argument: -OnPrem. If you need

to install the Dynamics On-Prem v8.2 compatible version, use -OnPrem_8_2 instead.

version 9.0

version 8.2

5: Provide Dynamics On-Prem Service Credentials

You will need to login for this script to continue, please be sure to check the ‘Display list of available

organizations’ to make sure that you select the correct instance of Dynamics to install to!

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString

'AuthType=AD;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Password=

{DYNAMICSPASSWORD}'

This is a sample connection string; with an on-premises install, there are a wide variety of options that

may be relevant, depending on your architecture. For more information on connection string formats, refer

to Microsoft’s available documentation, found here.

Important: Some customers have reported needing to provide a username in the format

“domain\username” in order to successfully connect using IFD.

https://msdn.microsoft.com/en-us/library/mt608573.aspx?f=255&MSPPError=-2147217396

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 49 of
112

Observe that no errors occur while the script is executing.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 50 of
112

6: Configure the Rule Services Solution in Dynamics

Next, we need to tell the Dynamics Solution that has been deployed where to find the Rule Execution

Service deployed earlier. We will need to have the Rule Execution Service URI ready for this step.

Navigate to the Rules Configuration Page

When the Rule Services Solution is entered for the first time, the Welcome to InRule for Microsoft

Dynamics 365 wizard will appear:

Close the wizard, as it is applicable to Online only.

At the top of the Rules Services Solution configuration page, you will see the Service Endpoint

Configuration options for the solution:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 51 of
112

All of these settings can be left as their default values for an on-premises installation, as they pertain to

the Online solution only.

Instead of configuring the above, you will need to scroll down all the way to bottom to the “Rule

Configurations” section and select the active Rule Configuration

The following popup should appear:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 52 of
112

You can configure the naming conventions of this rule configuration as you see fit, but under “Advanced”

on the right-hand side of the page, you will need to set the Service Endpoint URI to the URI of your Rule

Execution Service endpoint

Be sure to click save (the small save button in the bottom-right corner)

7: Verify a successful deployment!

A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves

will depend on other settings that have been configured under the Rule Configuration section; this

document assumes the default configuration behavior. To understand what settings are available and

what they mean, please see Appendix E: Methods for Executing Rules from Dynamics 365 of this

document.

Open up an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App

from the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog

stage. If everything has been set up correctly, you should see the “Rule Execution Completed” message

and the description of the account will be updated to provide the date and time.

It is worth noting that the On-Prem plugin will be deployed outside of Sandbox mode. To read more on

why this is necessary and the resulting implications, reference Appendix L: Known Issues, Limitations and

Troubleshooting.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 53 of
112

Appendix A: Additional Resources

Having trouble? Relax! InRule offers many additional resources to help you get InRule correctly

integrated with Microsoft Dynamics 365.

InRule’s Support Website

InRule’s support website can be found at http://support.inrule.com. If you do not already have a login for

our support site, the client administrator at your company has the ability to create an account for you. If

you are unsure of who your client administrator is, please email support@inrule.com.

The InRule Support Website has three different areas that readers should be aware of:

1. Downloads

2. Documentation

3. Forums

http://support.inrule.com/
mailto:support@inrule.com

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 54 of
112

The Downloads section

The download section of the Support Website contains numerous resources that will likely be of interest

to you:

InRule Installer*

Filed under the ‘InRule’ section of the downloads page, The InRule installer package will launch a

graphical user interface that will walk the user through installing many of InRule’s offerings. These

offerings include both irAuthor which is used to edit Rule Applications, and irX for Microsoft

Dynamics 365, which is an extension to irAuthor that allows synchronizing schema between Rule

Applications and Dynamics 365.

*It is recommended that the reader of this document has established a rule-authoring environment

by installing both irAuthor and irX for Microsoft Dynamics 365 before attempting to deploy the

InRule for Microsoft Dynamics 365 Integration Framework.

irX for Microsoft Dynamics 365 Help Documentation

Filed under the ‘InRule for Microsoft Dynamics 365’ section of the downloads page. This document

discusses how to utilize the irX for Microsoft Dynamics 365 irAuthor extension to connect to

Microsoft Dynamics 365 in a rule-authoring environment to synchronize rule application schema

objects against Microsoft Dynamics 365 entities and to test Rule Applications directly against data

coming from the Microsoft Dynamics 365 environment.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

This is the guide that you are reading now. The intention of this guide is to give a complete

reference for those wanting to get the Integration Framework up and going as quickly as possible

without deviating from what we consider to be the most common deployment scenario.

This is a fantastic place to start if you already have some familiarity with irX for Microsoft Dynamics

365 and are ready to deploy the InRule for Microsoft Dynamics 365 Integration Framework as a

runtime companion.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 55 of
112

InRule for Microsoft Dynamics 365 Integration Framework

This downloadable archive contains all of the following located off of the root:

• Rule Applications \ Dynamics Rules.ruleapp: This Rule App is intended to be used both

to test a basic deployment of the Integration Framework, but also to serve as a starting

point for authoring further rules against your Dynamics 365 environment.

• Rule Execution Azure Service: This folder contains the app service package and

configuration files that will be needed to deploy the Rule Execution App Service to Azure as

discussed elsewhere in this document.

• Rule Execution OnPrem Service: This folder contains the web app and configuration files

that will be needed to deploy the Rule Execution on-prem service as discussed elsewhere

in this document.

• RuleHelper Deployment: This folder contains the .NET assemblies necessary to utilize the

Rule Helper library to dynamically query Dynamics 365 for information during the execution

of rules. RuleHelper is included with the Rule Execution Service, but also made available

here for deploying to irAuthor's EndPointAssemblies folder

• Dynamics Deployment: This folder provides all of the resources needed to deploy the

necessary Solution, Plugin, Endpoint, and Step registrations required to enable Dynamics

365 to send Rule Execution requests to an Azure Service Bus with an attached Rule

Execution App Service.

• ReadMe.txt: This file contains some information about this Integration Framework,

including historic release notes, product version information, and license information.

Catalog App Service – Azure Package and Config File

Found in the ‘InRule for Microsoft Azure’ section of the downloads page, this archive contains both

the app service package and app service configuration files that you will need to perform an Azure

based installation of irCatalog.

Catalog App Service – Install Documentation

This document will discuss how to install InRule’s irCatalog in Microsoft Azure using a PaaS model.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 56 of
112

The Documents section

The documents section of the Support Website contains additional documentation about how the various

components to InRule operate.

Although the documents section does not contain documentation that discusses integration with

Dynamics 365 (that documentation can be found in the downloads section), it does contain the following

three areas of interest:

1. Online Authoring Help: This document discusses anything you would need to know about how to

author Rule Applications. The majority of this document applies to utilization of irAuthor, InRule’s

custom graphical authoring product.

2. Online SDK Help: InRule exposes an extensive .NET based API. This document discusses the

use of the full SDK for use by software developers that would like to integrate with InRule.

3. Miscellaneous documentation section: Here you will find a variety of special interest documents,

such as an installation guide, an implementation guide, and a guide that focusses on InRule’s

UDF language, irScript.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 57 of
112

Online User Forums

Numerous internal resources at InRule monitor InRule Forums. This is the first place to go if you want to

benefit directly from the helpful and knowledgeable people at InRule.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 58 of
112

InRule’s Support Team

The support team at InRule is available to help with any product support

needs, troubleshooting suspected product bugs, resolving any licensing

issues, and free tele-hugs.

The best way to reach Support is through a detailed email sent to

support@inrule.com.

You can also reach our support team by calling +1 (312) 648-1800.

InRule’s ROAD Team

ROAD Services agreements can be used to engage with ROAD, InRule’s

professional services team.

ROAD can provide your organization with specialized consulting and

tailored Architecture and Authoring Guidance.

ROAD can assist with less common installation requirements, such as

deployment to third party cloud providers or integration with custom

software.

ROAD can be contacted by emailing ROADServices@InRule.com

InRule Training Services

InRule offers the following interactive training services:

• Onsite and Remote attendance courses

• Hands-On multi-day courses with interactive labs

• Virtual Express training courses delivered online for rapid knowledge

transfer

If you are interested in scheduling training services, please contact us at Training@InRule.com.

mailto:support@inrule.com
mailto:ROADServices@InRule.com
mailto:Training@InRule.com
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjV6Zio79bVAhUGS2MKHeBfAYIQjRwIBw&url=http://teckgeekz.yolasite.com/&psig=AFQjCNGQhoeRi1koExE9WyH8aOxC3uYImw&ust=1502804920316659

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 59 of
112

Appendix B: Anatomy of a Request for Execution of Rules Diagram

The below diagram helps to give a top-level understanding of how InRule is integrated with Microsoft

Dynamics 365 (Online). Please note this this diagram is a simplification that does not cover topics like

caching, iterations, and multiple environments. It serves to show how the request moves through different

Azure resources.

1. A Dynamics 365 Event based on a configured step fires, such as ADD, UPDATE, DELETE, or CUSTOM. This generates a call

to the Service Bus, which is setup to relay requests to the connected Rule Execution App Service.

2. The Service Bus receives the request and relays it to the Rule Execution App Service, which has attached itself to the Service

Bus as a relay listener. For On-Premises, the rule execution service interacts directly with Dynamics.

3. The Rule Execution App Service makes a request to the Catalog Service, asking for a copy of the requested RuleApp.

4. The Catalog Service Queries its SQL Server based database for a copy of the requested RuleApp.

5. The SQL Server responds with the RuleApp.

6. The catalog service responds to the Rule Execution App Service with the RuleApp.

7. The RuleApp executes inside the Rule Execution App Service.

8. Optionally, the RuleApp has an opportunity to query Dynamics 365 for additional data needed to execute rules.

9. The RuleApp completed execution

10. The Rule Execution App Service responds through the Azure Service Bus

11. The Azure Service Bus relays the response to Dynamics 365, where the receiving plugin synchronizes changes.

Microsoft Dynamics 365 (Online)

Microsoft Azure Service Bus

Rule Execution Azure App Service

Catalog Service (Azure App Service)

SQL Server & Database [Microsoft Azure SQL Server]

RuleApp

Step 1: A CRM Event, based on a configured step fires
Such as ADD, Update, Delete, or Custom

A call goes out to the service bus

Step 11: Service Bus relay response
containing any changes to Dynamics 365

Step 2: The Service Bus communicates
to the Rule Execution App Service

Step 3: The Rule Execution App Service requests
to download the RuleApp from the Catalog Service

Step 4: Catalog Service queries database for RuleApp
Step 5: SQL Server responds with RuleApp

to catalog service

Step 6: The catalog service responds to the
Rule Execution App Service with

the RuleApp

Step 10: Rule Execution App Service
responds through service bus relay

Step 9:
Rule App completes

Step 7:
App Service executes

the RuleApp

Step 8: (optional) RuleApp utilizes RuleHelper to query
additional data from Dynamics 365 Instance

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 60 of
112

Appendix C: irX General Integration Concepts

Runtime Mapping across Nested Relationships

Much like Dynamics 365, the InRule rule engine offers strong support for hierarchical and relational data.

Within a given Rule Application, data can be considered across parent-child relationships within a single

rule request. These relationships can take the form of Collections (1 - * relationships) or 1 – 1

relationships.

• Note: When N:N relationships are imported into InRule, they behave as 1:N Collection
relationships within the Rule Application.

In addition to the abilities of both products to handle relational data, both products also offer the ability to

declaratively configure “Entities” and “Fields”. Both products also allow for different strongly-typed Entities

and Fields to be accessed with loosely-typed SDK interfaces. Because of these inherent similarities and

flexible interfaces, it is possible to build a reusable mapping component that can convert any given graph

of loosely-typed Dynamics Entities to InRule Entities, and vice versa.

Controlling irVerify Behavior with Load, Save and Inactive Record

Settings

When working with a tree composed of many related Dynamics Entities, it is often useful to have explicit

control over which relationships are either automatically loaded or automatically considered in change

detection for persistence. If a relationship is skipped during the initial load routines, then it is available to

be conditionally populated later using rules.

In the irX rule authoring ribbon, there are three buttons that give the rule author the control to denote if a

relationship should be automatically loaded, saved or have inactive records excluded.

• Note: Automatic loading and saving is enabled by default for all relationships that are
imported from Dynamics. The rule author can opt-out of these automatic behaviors by
unselecting “Auto Load” or “Auto Save”. When these buttons are selected, metadata
attributes are written into the Rule Application for the given relationship. These metadata
attributes are used by the irVerify data loader when recursively loading data or detecting
changes for persistence.

• Important: If loading or saving is disabled for a given relationship, then it is also disabled for
all Entities that are children of that relationship.

Since Microsoft Dynamics 365 uses the "inactive" status to do a soft delete of records, it is possible to

include both active and inactive records when loading a Collection or relationship. You can use the

"Exclude Inactive" button to exclude inactive records, returning only active records. To ensure that this

feature works correctly, the child Entity of the Collection or relationship should map the Dynamics 365

Status field.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 61 of
112

Appendix D: Accessing Dynamics 365 Directly from Rule Helper

In the default Rule Execution setup, all relationships between Entity types must be established before

these entities can be used by the rule app. This behavior is intuitive, but it is not ideal for all business

problems. The InRule Integration framework provides a ‘Rule Helper’ assembly that can be used directly

in a rule app and allows rules to load, compare, and assign data that is not related in Dynamics before

rules are executed.

When to use the Query from Rules Approach

The query from rules approach adds value for the following business problems:

• The rules need to reference “lookup” information that may be in a list or set of Entities that are not
specifically related to the current Entity hierarchy

• The purpose of rules is to create new relationships between Entity instances that already exist in
Dynamics

• The rules need to compare many combinations of unrelated Dynamics Entities and produce
results about best possible matches or scores

• A custom filter is required when loading data for 1:N or N:N relationships

Working with Disconnected Fields when Loading and Saving Data

One of the most important integration concepts when loading Dynamics data from rules is the notion of

“Disconnected” Fields and Fields that have “Auto Load” and “Auto Save” disabled.

irX allows the rule author to explicitly control the “Auto Load” and “Auto Save” behaviors of Fields that are

connected to Dynamics.

The example below shows a Collection named CandidateProducts. Since the Collection is not marked

with a blue triangle, it is not considered to be attached to Dynamics.

• Important: Although Entity Fields and Collections may be “Disconnected” from Dynamics,
the types contained by the Collections can be set to types that were imported from Dynamics.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 62 of
112

• Note: If a Field is added to the schema using irAuthor, then it will be disconnected from
Dynamics. If a Field has been imported from Dynamics using irX, then it can be disconnected
from Dynamics by clicking the “Disconnect Item” button in the irX ribbon.

• Important: Two additional settings appear in the irX ribbon that offer additional control over
automatic loading and saving behaviors for Fields that remain connected to Dynamics. In the
example below, both buttons are “lit up”, which denotes that the settings are enabled. By
default, automatic loading and saving is enabled for all Fields that are connected to
Dynamics.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 63 of
112

Integrating the Rule Helper Component

InRule provides a sample rule application (DynamicsRules) that is already configured for RuleHelper

usage. You can simply edit this rule app, or, if you wish to integrate RuleHelper into an existing rule app,

you can copy both the UDF Library “RuleHelper” and End Point ‘CrmHelper” from the DynamicsRules rule

to another rule application.

If you wish to manually create the UDF Library and End Point in irAuthor, follow the steps below.

1. Create a new rule app using the irX add-in for irAuthor.

2. Create a new “.NET Assembly Function Library” end point and bind the end point to the
InRule.Crm.RuleHelper.dll assembly. Select the DynamicsDriver class and then select the
methods that should be callable from rules. Edit the name of the end point to “CrmLib” or similar.
Select the methods from the DynamicsDriver that are needed for the Rule Application. You do not
need to select all the methods—only import the methods that will actually get used by rules.
Additional methods can always be imported later be revisiting the endpoint screen and reloading
the assembly.

3. Add a User Defined Function library and set the name to “CrmHelpers” or similar. This library will

contain functions that the rules will call to query Dynamics.

4. Add a User Defined Function to the new library. The example below shows a UDF that will be
used to execute the QueryCollection method on the DynamicsDriver. Fill out the UDF with script
that will call a method on the DynamicsDriver.

• Note: The methods on the DynamicsDriver are designed to be reused for more than one
Entity type, Field, or set of Fields. The name of the Target Field or Collection should be
supplied as a string. When querying a Collection of results, an optional “where” clause can be
provided that will be forwarded to calls against the CRM SDK. In addition, an “order by”
clause can be provided to return sorted results.

• Important: This integration pattern relies on the “Context” object that is available from
irScript. The Context object returns information based on the context under which a given
UDF is executed. For example, when executing an Entity Rule Set, the Context.Entity returns

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 64 of
112

a reference to the Entity against which the current Rule Set is executing. The Context and its
child properties are passed to the DynamicsDriver so it has enough information to form calls
to Dynamics 365 and map responses back to the InRule Rule Session.

• Note: The Context.FunctionLibraries property can be used to create calls to the .NET
assembly library methods, such as the methods imported in Step 5 above. The following
script example demonstrates how to use the Context object in irScript to form a call to a static
.NET method:

Context.FunctionLibraries.DynamicsDriver.QueryCollection(Context,

Context.Entity, collectionName, filter, orderBy, connectionString);

• Important: The “connectionString” argument is optional due to overloading of the methods
on the DynamicsDriver class. If the connectionString is not passed in the by the rule engine,
then it will be looked up from either the .NET config file based on the given environment. A
sample connection string that need to be defined in the irAuthor.exe.config XML is included
below. For information on Dynamics connection string formatting, refer to
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-
tooling/use-connection-strings-xrm-tooling-connect

5. Rules can now be authored to execute methods on the DynamicsDriver. These methods can be
used to load Collections, single Entities, or single Fields from Dynamics based on conditional
logic within rules.

• Note: The example above includes a call to the default business language templates for a
method on the DynamicsDriver. The InRule vocabulary features can be used to modify these
templates to be more user-friendly for business users.

• Important: The Target Collection in the sample rule is called “FamilyMembers”. This is a
Field that either does not exist in Dynamics (only for use in rules), or has been imported and
then “disconnected” from Dynamics using the “Disconnect Field” button, or has “Auto Load”
disabled.

• Note: Please see the following sections for more details on the creating the “filter” clauses
similar to the one used this example.

Filtering Queries using the Where Clause Builder

When loading data from Dynamics during rule execution, it is critical that the rule author is able to author

logic to specify which Entity data to load. Using the RuleHelper, this is accomplished by allowing the rule

author to pass in a “filter” or “where” clause into the calls against the DynamicsDriver class.

<connectionStrings>
<add name="DynamicsCRM"
connectionString="AuthType=Office365;Username=jsmith@contoso.onmicrosoft.com;
Password=passcode;Url=https://contoso.crm.dynamics.com"/>

</connectionStrings>

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 65 of
112

During execution of the DynamicsDriver, the filter clause is parsed into an Abstract Syntax Tree (AST)

and then translated into a LINQ expression tree, so it can be consumed using the CRM SDK. The filter

clause is based on the InRule function syntax format.

• Note: The InRule function syntax format is used for the following reasons:

o The syntax rule format is consistent with the rule authoring experience used
throughout irAuthor

o This format can make good use of the InRule AST parser that is included as part of
irSDK

The diagram below depicts the logical flow of steps used by the DynamicsDriver and WhereClause

builder classes to query data from rules.

The diagram and notes below contain some additional information about forming the filter clause in a rule:

• All the Field names that are used are the Dynamics friendly names that are used in the Rule
Application. These names are mapped back to the Dynamics Field names in the parser.

• String literals should be wrapped in single quotes, date literals should be wrapped in pound signs.

• Simple operators are supported to compare values, such as =, !=, >, < (ex. Age > 21, Name !=
‘Ralph’).

• Multiple conditions can be chained together using ‘and’ and ‘or’ keywords.

• The expression tree builder will attempt to call a given .NET framework function if it appears in
the expression.

Dynamics CRM
Database

Dynamics
Organization

Service

Rule Engine

Initiate queries
with optional

filters

Continue
Running
Rules...

Execute LINQ
query using

expression tree
with

CRM xRM SDK

Running
Rules...

Parse Filter
(Where) Clause to

AST using
InRule.Repository

Translate AST
to .NET

expression tree

Populate RuleSession
with InRule Entities
using EntityMapper

Simple type values as
literals or passed from

field values

Condition operators
(and/or)

CRM friendly
names

.NET String functions,
with field to operate on

as first argument

Comparison operators
(=, >, !=, etc.)

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 66 of
112

o The .NET call must be expressed as a function, with the first argument being the name of
the Field to operate on. The remainder of the arguments will be passed through in order
to the .NET function call when it is formed.

o Examples: StartsWith(FirstName, ‘A’) EndsWith(LastName, ‘ez’) Contains(LastName,
‘Smith’)

o Any non-static methods on the .NET String class are candidates to be called as functions
using the parser syntax above. However, InRule has only tested the StartsWith,
EndsWith, and Contains methods on the String class.

• The following keywords and operators are supported by the InRule AST parser and expression
tree translation code: =, <>, !=, +, -, *, /, or, and, xor, >, >=, <, <=, ^, %

The filter expression also supports querying against related entities, simply by appending the related

entity name in front of the relevant query field. Querying against related entities requires that all entities

queried in the relationship chain be imported into irAuthor. The queried fields on each of the queried

entities do not necessarily need to be imported, but if they are not, the entire Dynamics schema field

name must be used, rather than their irAuthor aliases.

In this example, we are populating a collection by querying the Contact entity, which is the “parent” entity

here. We are then applying a filter statement to return only contacts with related Cases that have

Descriptions starting with “A.” Cases in this example is the “child” entity. Notice how the hierarchy of the

related entity down to field is denoted. If you wanted to drill down another layer to a “grandchild” entity (in

this example, an entity related to Case), it would be accomplished by simply continuing the chain from

entity to field. Below is an example of a “grandchild” case:

This example would return Accounts that have related Contacts with Cases with Descriptions starting with
“A.” The filter expression can support querying in this manner up to 10 “layers” deep, including the initially
queried entity. Put another way, you can have up to 10 total different related entities in a single filter
expression.

The filter expression supports querying against multiple properties from different related entities. In the

below example, we are querying for Contacts with Cases thSat have Descriptions starting with “A” and

also have Leads with Names starting with “A.”

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 67 of
112

Ordering Query Results with the OrderByClauseBuilder

The DynamicsDriver class also supports the ability to control the order of the results returned from

Dynamics by passing in an optional “order by” clause. The order by clause can accept only a single Field

name, which should be the name of the Field in the Rule Application. The results are always sorted in

ascending order, unless the Field name is followed by the “desc” syntax. Please see the examples below:

To sort ascending, pass the Field name to use in the sort:

To sort descending, pass the Field name to use in the sort followed by the “desc” keyword:

• Note: The “order by” clauses generally contain much simpler expressions than “where”
clauses. However, InRule syntax rules format is used for the order by clause to be consistent
with the where clause approach.

• Important: The parsing and translation of the order by clause is handled in the Rule Helper
contained in the OrderByClauseBuilder class.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 68 of
112

Methods Available in the Rule Helper

The following table lists the public, static methods that are available in the DynamicsDriver

Method Name Description
LoadMappedChildCollection Populates a child Entity Collection based on an existing 1:N

relationship in Dynamics. The Collection is populated based on
existing parent-child relationship data in Dynamics.

LoadMappedChildEntity Populates a child Entity Field based on an existing 1:1 relationship in
Dynamics. The Field is populated based on existing parent-child
relationship data in Dynamics.

QueryCollection Populates an Entity Collection with a set of a given Entity type. An
optional filter clause (where clause) can be used to define selection
criteria for the Entity set. The Collection does not need to correspond
to a 1:N relationship in Dynamics.

QueryEntity Populates an Entity Field or variable based on a query to Dynamics.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. The Field does not need to correspond
to a 1:1 relationship in Dynamics. If more than one Entity is returned
from the query to Dynamics, then the first Entity in the set is used.

QueryField Populates a primitive Field or variable based on a query to Dynamics.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. If more than one Entity is returned from
the query to Dynamics, then the Field value from the first Entity in the
matching set is used.

QueryNtoNCollection Loads entities across an N:N Collection that has been defined in
Dynamics. The relationship name and parent and child ID Fields must
be provided.

LoadMappedNtoNCollection Similar to QueryNtoNCollection, except that the relationship must be
imported into the Rule Application.

GetUserLocalTimeFromUtc Converts a Dynamics UTC time value into the local time for a given
user. This method makes use of the LocalTimeFromUtcTimeRequest
that is part of the CRM SDK.

Additional Flags Available to Control Loading and Caching Behaviors

in the Rule Helper

During a given query operation, there may be advanced use cases that require specific control over

loading or reloading data from Dynamics 365. The optional overloads of the QueryEntity and

QueryCollection methods expose a set of optional Boolean flags that help control caching and depth of

loading behaviors. The table below list these parameters:

Parameter Name Description
loadChildren Denotes if the execution service should recurse the Entity graph and

load all children. If false, no children are loaded below the Collection
Members that are loaded. The default value is true.

useCaching Denotes if previously loaded Dynamics Entities should be reused from
the InRule entity cache, or if new Dynamics instances should be
created. If false, a copy of the Entity is created, and its Instance ID is
not set to the GUID of the Dynamics Entity. The default value is true.

overwriteIfLoaded Denotes if a previously loaded Dynamics Entity should be repopulated
with the latest values in Dynamics. This behavior will overwrite Field
values stored in the cache. The default value is false.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 69 of
112

cacheInAppDomain Denotes if the result of the query should be saved in the persistent
AppDomain cache. The difference between this parameter and the
‘useCaching’ parameter above is that enabling this parameter will save
the query result in a cache that will persist across multiple different rule
executions, where the above parameter only enables caching within the
scope of a single rule execution. For more information, refer to
Configuring the AppDomain Cache

• Note: The default values should always be used for the cache settings unless there is a
specific use case that requires different behaviors.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 70 of
112

Appendix E: Methods for Executing Rules from Dynamics 365

InRule for Microsoft Dynamics 365 provides several methods for the execution of rules. The default and

most obvious method included with the solution is the ‘Run Rules’ button, which is enabled by default on

every Dynamics entity form. This allows users to easily execute rules on demand, but other options are

also available, which are listed below. Detailed instructions for how to configure these methods are

included in the linked sections:

1) Plugin Events

2) Run Rules Button

3) Workflow Activity

4) Form Events

5) Custom JavaScript

6) Custom Action

All of these options can be used together, and each have factors to consider when choosing which to use.

Some of the key considerations are outlined below.

User Control

If users need to be able to execute rules on demand, the Run Rules button and Workflow activity are the

easiest choice to work with. The Run Rules button is displayed on the command bar of every entity, so it

can easily be clicked at any time by end users to get feedback from rules. Using the custom workflow

activity also allows rules to be run on demand, potentially as part of a more complex process that contain

a rules processing step.

Rules can be invoked indirectly by the user by tying rule execution to events within Dynamics. The typical

way to accomplish this is by configuring the InRule plugin to run on entity Create or Update events. Form

events like field change or form save can also be used to trigger rule execution. For more advanced form

scenarios, like integrating with another command bar button, custom JavaScript can also be used. The

included Custom Action can even be used to respond to user events outside Dynamics, by providing a

web API endpoint that can be accessed by external systems.

Display in the User Interface

If you want to display information to the end user based on rule execution, the run rules button is the

easiest method. When executing rules from the button, any Errors, Warnings and Informational

notifications will be shown in the notification pane, along with any Validations. Executing rules via the

included form events helper function or calling the executeRules function from custom JavaScript will also

display the same information.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 71 of
112

Using the custom workflow activity itself will not display any data in the UI, but the workflow activity does

provide output variables with the results of rule execution that can be displayed in a dialog or output via

some other method if desired.

Plugin events will not typically display any info in the UI, but any errors or validations will show up in the

plugin error pop-up if the plugin is set to run synchronously.

Execution Against Dirty Data

If you need to execute rules against dirty form data, or any entity state other than what is saved to the

database, you can enable the ‘Use Dirty Entity Image’ setting as described in An Explanation of the

InRule Custom Action Options. If this option is enabled when running rules from the ‘Run Rules’ button,

the current form values will be collected and sent to the rules. This can be used to perform form value

validation, or to provide insight into a what-if scenario prior to changes being saved. This same config

value also governs the behavior for form events or any custom JavaScript that calls executeRules.

The custom workflow activity and plugin events do not provide the ability to specify a dirty entity image.

They can only run against the data provided by the plugin pipeline. However, in the case of a plugin

entity update event the entity change image is automatically included. In addition, the custom action

provides a dirtyEntityImage field that accepts a json-serialized entity image.

Responding to API Events

If you want to always execute rules when an entity changes, no matter how those events are initiated, you

need to register the included plugin to an event. Running rules based on plugin events means that not

only will rules be executing when creating or saving entities from within the Dynamics 365 Entity Forms

UI, but they are also executed when entities are changed through API calls.

API calls are frequently consumed by 3rd party add-on user interfaces, Extract-Transform-Load (ETL)

synchronization with other software products, and by custom software solutions as an integration point

with Dynamics 365. By utilizing this option, an implementer can take advantage of rule execution for

needs beyond the Dynamics 365 Entity Forms UI.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 72 of
112

1 Plugin Events

The Rule Services Solution contains a plugin that can act as a handler for events fired by Microsoft

Dynamics 365. By registering new steps to Create or Update events against Microsoft Dynamics 365

Entities, rules execute against the entities that are associated with an event as it occurs.

Configuring Plugin Events

You can register plugin steps using the InRule Rules Configuration page included with the Rule Services

Solution. Alternatively, for advanced scenarios, you may use the Plugin Registration Tool from the

Microsoft Dynamics 365 Software Development Kit (SDK), but this is typically only needed for special

circumstances where greater plugin management is warranted.

There are two steps required to register a plugin event:

1. Create a Rule Configuration Record (or use the Default Rule Configuration) - create or update

a Rule Configuration record according to the steps in Updating InRule Rules Configuration

Records

2. Associate the configuration record to the create or update message of an entity by following

the steps in Associating an InRule Configuration record to an Entity

Pre-Operation vs Post-Operation for plugin step registration. Plugin step registrations can be configured

to run on either Pre-Operation or Post-Operation. By default, the InRule configuration page will register all

plugin steps to Post-Operation. In some scenarios Pre-Operation may be preferred. For example, if there

are both create and update plugin steps registered to the same entity, using Post-Operation for create

can result in extraneous update messages being fired when running rules on create. The create plugin

step registration can be changed to Pre-Operation using the Microsoft Plugin Registration Tool. There are

a few limitations to Pre-Operation plugin step registrations. Since Pre-Operation takes place before the

entity is saved to Dynamics, entity associations and status code checking will not work.

Validation and Cancellation

When running rules from a plugin, you may want to cancel any changes that have been made to the

entity as well as any changes made from rules. One way to accomplish this is by returning a validation

error from the rules. If the plugin detects any validation errors, it will skip saving any changes made by the

rules and stop the plugin pipeline to prevent any further changes. If an end user is saving or creating an

entity and this happens, they will see the following error:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 73 of
112

For a better validation user experience, you can also run rules on the ‘OnSave’ event of a form, as

described in the Form Events section.

Plugin Registration Tool (Advanced Scenarios Only)

Important: This tool registers all steps to Post Operation stage of execution. If an alternate
stage is desired the registration will need to be modified with the Microsoft Plugin Registration
tool linked and pictured below. Other custom configuration scenarios may include changing the
Execution Mode to ’Asynchronous’ or adjusting the Execution Order.

You will also need to use the registration tool if you want to register the plugin to events other
than ‘Create’ or ‘Update’. Link to download SDK tools: https://docs.microsoft.com/en-
us/dynamics365/customer-engagement/developer/download-tools-nuget

The unsecure configuration field contains the GUID identifier for the associated Rule

Configuration. If there are additional inrule_RulesEngineAction steps they will all be stored in this

configuration field on the InRule Custom Action Step as entity name, ID pairs.

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 74 of
112

2 Run Rules Button

The ‘Run Rules’ button makes it easy for the end user to choose when to execute rules. The Rule

Services Solution places this button on the ribbon of each Dynamics 365 Entity Form, as shown here:

When the Run Rules button is pressed, the included JavaScript will execute rules against the current

entity based on the settings defined in the Rule Services Solution – Rule Configuration Form, described in

Appendix F: Rules Configuration and Settings. Once you’ve set up the Integration Framework and

validated all functionality, you can hide this button from all forms where it’s not used in order to prevent

confusion for end users. To do this, follow the steps below to hide the button in the default configuration,

and then create new configurations to show the button only on the entities that have associated rules.

Disabling the InRule Run Rules Button

Out-of-the-box, the Run Rules button is used to manually initiate the execution of rules. In some

instances, the Run Rules button may not be needed, and the button can be disabled as described below.

1. Create or update a Rule Configuration according to Updating InRule Rules Configuration

Records. If you want to hide the button for all forms on all entities, edit the default record.

Otherwise, create a new record for the specific entity you’d like to show or hide the button on.

2. Set the Show Run Rules Button under the Custom Action Settings section

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 75 of
112

3. If you edited the default record, you can skip this step. Otherwise, you’ll need to associate the

Configuration record you just modified with a particular entity by following the steps in Associating

an InRule Configuration record to an Entity

Using the RuleSet List

Out-of-the-box, the Run Rules button is scoped to only run the default rule set that is specified in the

configuration file. With the RuleSet List field, you have the option to add a comma separated list of rule

sets that may be selected. When this is populated the Run Rules Button will have a dropdown menu

added to allow you to select the rule set when running the rule. To enable this functionality, follow the

steps below:

1. Create or update a Rule Configuration according to Updating InRule Rules Configuration

Records. Unless you want this list to appear on all entities, make sure don’t modify the Default

record.

2. Fill in the ruleset names that you wish to use in this field. Make sure that they are separated with

a comma or the menu will not load correctly.

3. Associate the configuration record above with the entity you’d like the list to appear on by

following the steps in Associating an InRule Configuration record to an Entity

4. Go to the entity page for the configuration that you have just edited and ensure that the Run

Rules button now has the desired ruleset options listed.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 76 of
112

Using the Run Rules button from Entity View

The Run Rules button can also be used from an entity view page. This allows for running rules against

multiple entities at once. To do so, simply navigate to the entity view for the entity type you wish to run

rules against and select the entities against which you want to run rules.

Once at least one entity is selected, a Run Rules button will appear in the Ribbon. This Run Rules button

functions identically to the Run Rules button on an entity page and provides a similar dropdown menu for

multiple rule sets associated with an individual rule configuration.

Running rules in this manner will use the rule configuration associated to the entity type that you are

running against.

A key limitation to be aware of while running rules via this approach is that entity view pages are unable

to display any sort of banner notifications or rule execution status. Should you want to view any

notifications associated with a rule execution from a view page, refer to the plugin trace log.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 77 of
112

Additionally, the entity view page run rules button will only execute rules against entities loaded on the

current page, up to a maximum of 100 entities.

3 Workflow Activity

If you need to run rules from a workflow, the solution provides a custom workflow activity that invokes the

included custom action. The custom workflow activity passes in the entity ID and type in automatically for

you, and provides the rest of the custom action settings as input fields on the activity. The activity also

returns the details of the response as individual fields, instead of raw json. These are the fields returned:

• Informational Notifications

• Warning Notifications

• Error Notifications

• Validations

• Errors

When using the custom workflow activity, you can select the option to throw an exception on failure. If you

choose to throw an exception on failure, the workflow will end immediately if the custom action fails, and

the user will see an error message if they are running the workflow synchronously. If you want to

implement conditional logic to handle failures, you can disable this option and check for the existence of

data in the Error return variable to determine if the activity failed.

If you don’t want to use the default configuration for a particular entity, create a new InRule Configuration

record according to Updating InRule Rules Configuration Records and then associate it with that entity by

following Associating an InRule Configuration record to an Entity.

Additionally, if you want to run rules against multiple entities, you can leverage custom workflows from an

entity view page and run the workflow against selected entities. This functions similarly to the entity view

page Run Rules button, but the notable difference is that custom workflows allow for the execution of

custom logic on the selected entities before the execution of rules.

 Important: Before you can use the custom workflow activity, you will need to update the max

plugin depth setting for the custom action step to be at least 2, instead of the default value of 1.

This is because causing a plugin to be run from a workflow adds 1 to the current plugin depth. For more

information on plugin depth, please refer to Changing the Max Plugin Depth

4 Form Events

While the ‘Run Rules’ button provides an easy way to run rules on demand, you can also run rules

automatically on form events, such as ‘OnSave’. To help with this, the invokeCustomAction.js web

resource provides a helper function called ‘executeRulesOnEvent’ that you can easily register to an

event.

When this function is registered to the ‘OnSave’ event of a form, it will trigger the rules

configured for the entity or event (see specific steps below). Any validation errors returned by

the rules will automatically cancel the save operation and display the messages in the

notification pane. Alternatively, if you need to use validations to prevent saving for updates

made from the Dynamics API, you’ll need to configure rules to run on the ‘Update’ or ‘Create’

event for an entity as described in the Plugin Events.

https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fsigaostudios.sharepoint.com%2Fsites%2FInRuleCRMProjectResponse%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F6b4f63e6b18c4938949323b8cb61c539&wdenableroaming=1&mscc=0&hid=56B0F79E-A0CF-9000-8529-6532D4B2A0C5&wdorigin=Sharing&jsapi=1&newsession=1&corrid=bbe4ec4b-74ba-41f5-84ca-e8cc23479cc2&usid=bbe4ec4b-74ba-41f5-84ca-e8cc23479cc2&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlushFallback#_Plugin_Events

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 78 of
112

I Important: If you want to use the dirty field values currently on the form, and not the values

already saved to Dynamics when running rules, make sure you set ‘Use Dirty Entity Image’ to true

when setting the InRule Configuration for this entity. You can do this by following the steps in Updating

InRule Rules Configuration Records and Associating an InRule Configuration record to an Entity.

1. Registering a function to a form event requires customizing the entity form. If you want to make

this change in a solution navigate to that solution first. Otherwise, navigate to Settings ->

Customization -> Customize the System

2. Navigate to the entity and form you’d like to customize and select it

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 79 of
112

3. Once the form is open, select ‘Form Properties’ in the ribbon bar, click ‘Add’ under ‘Form

Libraries’, find inrule_invokeCustomAction.js and add it

4. Select the desired Control and Event under ‘Form Handlers’ and click ‘Add’. In the window that

pops ups, select ‘inrule_invokeCustomAction.js’ for the Library, and enter

‘inRule.executeRulesOnEvent’ for the Function. Under the ‘Parameters’ section, ensure the ‘Pass

execution context as first parameter’ is checked. If you want to override the default ruleset and

ruleapp configured for the entity, the ruleapp can be passed in as the first parameter, and the

ruleset as the second. Both must be passed in order for this to work.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 80 of
112

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 81 of
112

5. Click ‘Ok’, ‘Ok’ and then save and publish the form

5 Custom JavaScript

While InRule provides the ability to easily run rules on demand with the ‘Run Rules’ button and form

events, you can also write your own JavaScript for more advanced scenarios and consume the functions

provided in the included invokeCustomAction.js resource directly.

Overriding Rule Configuration behavior with user Options and custom JavaScript

The Run Rules ribbon button executes the InRule.executeRules() method without passing in any

parameters. The method will use the configuration defined by the Rule Services Solution – Rule

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 82 of
112

Configuration Form. However, if an implementer chooses to call the InRule.executeRules() method from

within custom JavaScript code, a userOptions object can be passed in that will override the Rule

Configuration.

The above JavaScript clip demonstrates how to load up a userOptions object with the values, and then

pass those options on to inRule.executeRules(userOptions).

6 Custom Action

The Rule Services Solution contains a plugin that has a preregistered step called the InRule Custom

Action. The InRule Custom Action allows developers to trigger the execution of rules at arbitrary times by

calling into Microsoft Dynamics 365’s API. Actions provide an easy way to trigger functionality in

Dynamics and can be invoked using multiple different methods. Registering an action creates a

corresponding web API endpoint. This endpoint can be used by external code, or in the case of the ‘Run

Rules’ button, called from JavaScript. Actions can also be called from workflows directly with the

workflow designer, or through a custom workflow activity.

var formContext = executionContext.getFormContext();

var userOptions = {

 persistChanges: true,

 useDirtyEntity: false,

 entityTypeName: formContext.data.entity.getEntityName()

 entityId: xpage.data.entity.getId,

 useEntityPrefix: false,

 showConfirmation: true,

 showStatus: true,

 ruleAppName: "MyRuleApplication",

 ruleSetName: "MyRuleSet"

};

inRule.executeRules(userOptions);

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 83 of
112

Appendix F: Rules Configuration and Settings

The Rule Services Solution – Rule Configurations Form provides a central location where you can

configure the Plug-in provided by the solution. Some of the tasks that you can perform using this form

include:

• Change the properties of the default ‘Rule Configurations’ entry.

• Establish multiple ‘Rule Configurations’ each which can be associated with different steps.

• Choose the RuleApp Name that will be executed with a given Rule Configuration

• Choose the RuleSet Name that will be executed with a given Rule Configuration

• Choose the Service Endpoint that will be used to contact the InRule Rule Execution App Service
for Dynamics 365

• Setting the maximum plugin execution depth

• Choose the retry interval and retry counts

• Choose what options will be used by default from the InRule Custom Action JavaScript module to
the Rule Configuration Form

Drop down the chevron next to the first menu item after Dynamics 365, Select Settings, Select
Rules Configurations under the InRule heading.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 84 of
112

Updating InRule Rules Configuration Records

1. Login to Dynamics 365 and go to the “Settings” tab and select Rules Configuration under the
InRule section

2. Note the Service Endpoint ID that appears at the top of the “Service Endpoint Configuration”
section. This value will be needed in following steps.

3. Scroll down to Active RulesConfigurations

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 85 of
112

4. Right click on “Default” and select “Open in New Window.” The following should open up in a new
tab:

5. From here you can either edit the existing record or select “New” in the top right

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 86 of
112

6. Configure the Rule Configuration as follows:

a. Choose a name

b. Create a description

c. Enter the RuleApp containing the RuleSet you want

d. Enter the RuleSet you want executed when the step is invoked

e. Set “Service Endpoint Id” on the right side equal to the ID noted in Step 2

f. Press “Save” in the top-left corner

g. Repeat this process for every step you want to register

Associating an InRule Configuration record to an Entity

If you want to use different InRule Configurations for different Dynamics entities, you can create multiple

configuration records and then associate them to a particular entity. The same configuration record can

be associated to multiple different entities if desired.

It should be noted that if you wish to associate an inrule_RulesEngineAction to a specific entity type, this

will override the “default” custom action step. The “default” inrule_RulesEngineAction is a “global” custom

action step registration which all entities will default to using until you register a custom action step for a

specific entity type.

1. Create or update the configuration record according to the steps above

2. Return to the Rules Configuration page and navigate to the Step Registration Configuration

section and click Add New

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 87 of
112

3. Choose the SDK Message (Update, Create, inrule_RulesEngineAction)

a. Update – Update of the primary entity

b. Create – Create of the primary entity

c. inrule_RulesEngineAction – The custom action message invoked when the ‘Run Rules’

button is clicked. Choose this to override the default behavior for a particular entity

whenever the ‘Run Rules’ button is clicked, custom JavaScript is executed using the

included invokeCustomAction.js resource, the workflow activity is used, a form event is

used, or the custom action is invoked through some other means.

4. Select a Primary Entity for your rule registration to use

5. Open the Rule Configurations for Step dropdown menu that appears and select the Rule

Configuration that you made above.

6. Click “Update Step Registration” and verify that the registration successfully saves

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 88 of
112

An Explanation of the InRule Custom Action Options

The below options must be passed into the InRule Custom Action. InvokeCustomAction.js exposes

InRule.executeRules() which will use values defined in the Rule Services Solution – Configuration Form.

Alternatively, a consumer of InRule.executeRules() can pass in an object that provides specific values

that should be used on a call by call basis

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 89 of
112

Show Run Rules
Button

If true, then the Inrule Run Rules Button will be visible on all pages.

If false, then the InRule Run Rules Button will be globaly removed. This will
only effect the the use of the button, but not other registered plugin steps.

UseDirtyEntity

If true, the InRule Custom Action will expect that form data will be included in
the API call. The form data is used to populate the root entity in the Rule
Engine. This is useful in scenarios when data has changed on the Dynamics
form but the save button has not yet been pressed. This allows a user to run
rules against data before a save takes place.

If false, the only data passed to the Custom Action is the Entity ID (guid) of
the entity, and the Custom Action will query Dynamics directly for that entities
data. This limits the InRule Custom Action to being aware only of data that
has been fully saved to Dynamics.

UseEntityPrefix

If true, then the supplied RuleSetName is interpreted as a suffix to the
EntityTypeName. For example: if the supplied RuleSetName is “DefaultRules”
and the EntityTypeName you are dealing with is “Account”, then the
RuleSetName actually used will be “AccountDefaultRules”.

If false, then the supplied RuleSetName is interpreted literally.

ShowConfirmation

If true, this will ask the user in the
User Interface with the following
visual prompt before actually
executing rules:

ShowStatus

If true, a status messages will
be displayed within the
Dynamics interface when
rules are executing, when
rules are finished, and if rules
are cancelled by the
confirmation dialog.

RuleSet List
This is a free form text box that
allows for you to specify a list of
rule set names that can be run
with the particular rule set
configuration. When this is
populated, the default Rule Set
Name will be ignored and these
options will be populated into a
dropdown on the run rules button.

Displaying the Entity Image in Trace Logs

When troubleshooting running rules, it can sometimes be helpful to see the entire image returned from

the execution service. By default, this image is printed out in the trace log as json. However, printing this

out can cause other parts of the trace log to be truncated, so this can be conditionally disabled from the

Rule Configuration Form. To disable the entity image, follow the steps below:

1. Navigate to the Rule Services Solution Rule Configuration Form

2. Scroll down and select the ‘Default’ record under the ‘Rule Configurations’ section. Please note

that the change made in this specific record will take effect across the whole system.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 90 of
112

5. Set the Return Full Entity Image Button under the Rule Execution Service section

6. Save the Entity in the bottom right hand corner

Changing the Max Plugin Depth

Dynamics provides the plugin depth property to the plugin context to track the current depth of the call

stack. Whenever another plugin or process is executed within the scope of the current transaction, this

value is incremented by 1 in the invoked plugin. This value is commonly used to prevent infinite loops,

where multiple plugins keep firing each other. The Max Plugin Depth setting in the InRule Configuration

will stop execution of the plugin whenever the depth is greater than the specified value. By default, this

value is set to 1, but you may need to change it in certain cases, such as using the included custom

workflow activity, or running rules from within your own custom plugin. To update this value, change the

‘Max Plugin Depth’ setting using the steps in Updating InRule Rules Configuration Records, and

optionally associate the record with a specific event and entity by following the steps in Associating an

InRule Configuration record to an Entity

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 91 of
112

Disabling Persist Changes

When Persist Changes is set to enabled all changes made to all entities by InRule are persisted back to

Dynamics. When disabled any changes made by InRule are sent back in the response and can be

consumed by the caller, but they are not persisted back to Dynamics.

The Persist Changes setting can be found in the Plugin section of the Rule Configuration.

Configuring the AppDomain Cache

When using the Rule Helper, the integration framework provides the ability to save query results in a

persistent cache in the execution service AppDomain. This is useful if you have relatively static data that

is used consistently in one or more rule apps, since this cache persists across rule executions. By default,

this cache is disabled, but you can enable it by setting a value for the cache timeout in the Rule

Configuration. To update this value, change the ‘AppDomainCache’ setting to the desired retention time

in seconds using the steps in Updating InRule Rules Configuration Records, and optionally associate the

record with a specific event and entity by following the steps in Associating an InRule Configuration

record to an Entity. If this value is set to zero, the next time the rule helper is used from the execution

service the cache will be cleared. The cache will also be cleared if the execution service is ever restarted.

For more information on how to use the rule helper, refer to Appendix D: Accessing Dynamics 365

Directly from Rule Helper

Calling ApplyRules (Auto Fire Mode RuleSets)

To execute a RuleSet with its Fire Mode set to “Auto,” simply don’t define a RuleSet for your rule

configuration and associate that rule configuration to the entity type that your auto RuleSet is associated

with.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 92 of
112

Appendix G: Endpoint Override Configuration

As of version 5.5, InRule for Dynamics now supports Overriding Endpoint Configuration via Azure App

Service App Settings. This allows for the overriding of various endpoint settings configured on a rule app,

such as REST API URLs or Database Connection Strings, by setting App Settings on your execution

service App Service.

To set an endpoint override on your app service, simply navigate to your rule execution app service and

go to the Configuration view:

Select “New Application Setting”

The name of the override uses the following convention:

inrule:overrides:<YourEndpointNameHere>:<EndpointType>:<EndpointSetting>

Your endpoint name should match the name of the endpoint in the rule app you wish to override. The

available endpoint types are:

• DatabaseConnection

• MailServerConnection

• WebServerAddress

• WebServiceWsdlUri

• WebServiceMaxReceivedMessageSize

• XmlDocumentPath

• XmlSchema

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 93 of
112

• XmlSchemaValidation

• InlineTable

• InlineXmlDocument

• InlineValueList

• SqlQuery

• RestServiceRootUrl

• RestServiceAuthenticationType

• RestServiceX509CertificatePath

• RestServiceAllowUntrustedCertificates

The endpoint setting is the name of the setting to override for that Endpoint Type. Some Endpoint Types
have several Endpoint Settings; the available settings for each Endpoint Type can be read about in the
InRule support site documentation.

The value of the override App Setting would then be set to whatever value you wish to override with.

 Important: If an override type contains multiple settings, like RestServiceX509CertificatePath or

RestServiceAuthenticationType, be sure to include an App Setting for each of the settings listed in the

documentation.

Below is what a properly configured end-result would look like, using a RestServiceAuthenticationType
override as an example:

 Important: A notable exception to this format type is for the RestServiceRootUrl endpoint type. If

you wish to override a REST root URL, you will need to follow the following format instead:

inrule:overrides:<YourEndpointNameHere>:<EndpointType>

Below is what a properly configured RestServiceUrl override would look like:

Once your override is set, simply save the changes to your app service. Upon the next execution of rules,
the specified endpoint type will be overridden with the supplied value.

https://support.inrule.com/help/irSdkHelp50/overrides.htm

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 94 of
112

Appendix H: Azure App Service Plan Configuration

Azure App Service Plan Overview

The Dynamics Rule Execution Azure App Service service runs on an Azure App Service Plan. The ARM

Template deployment process outlined in Section 3.3.3: Rule Execution App Service for Dynamics 365

will, by default, automatically deploy an App Service Plan for you.

This App Service Plan will be deployed to the subscription and resource group provided during the

deployment process. Additionally, the plan will be configured with a “B1” (Basic, Small) pricing tier. This is

the lowest tier possible for the Rule Execution App Service to run in, as it is the lowest tier that allows

running in Always On mode. Always On is required to permit a continuous web job to run on the app

service. Thus, regardless of whether or not you opt to allow the ARM template to create an App Service

Plan for you, or use a pre-existing one, the plan must, at a minimum, be of the “B1” tier or higher.

Should you wish to use a pre-existing Azure App Service Plan rather than have a new one created for

you, a few configuration steps within the ARM template itself are necessary.

Configuring the ARM Template to Use an Existing Azure App Service

1: Locate InRule.Dynamics.Service.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined in

Section 3.3.3: Rule Execution App Service for Dynamics 365

2: Populate “appServicePlanName” parameter

Open the file in your text editor of choice. First, populate the “appServicePlanName” parameter at the

bottom of the parameters file. Set the value equal to the name of your app service plan.

3: Create “createAppServicePlan” parameter

Next, just below the “appServicePlanName” parameter you will add an additional parameter called

“createAppServicePlan” Detailed below (Note, be sure to add the pictured comma immediately following

the first bracket after the “appServicePlanName”preceding parameter):

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 95 of
112

4: Create “servicePlanResourceGroupName” parameter

Lastly, we need to add a parameter to inform the ARM template what resource group your App Service

Plan is in. Create the “servicePlanResourceGroupName” parameter as shown below and define the value

as the name of the resource group your App Service Plan exists in.

5: Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.3:

Rule Execution App Service for Dynamics 365 as normal; your rule execution app service will now deploy

to the App Service Plan you defined in the steps above

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 96 of
112

Appendix I: Dynamics 365 Tracing and InRule Event Logging

Dynamics 365 Plug-In Trace Logging

The Dynamics Plug-In Trace Log feature is a debugging tool made available within Dynamics itself for

reviewing plugin events and exceptions. This section will highlight how to enable this feature within

Dynamics and how to utilize it. Currently, Plug-In Trace Logs only work with the Execution Service in

online deployments. For more detail on the limitations of on-prem deployments, reference Appendix L:

Known Issues, Limitations and Troubleshooting.

Enable Plug-In Trace Log

To enable the Plug-in Trace Log, first navigate to Settings > Administration.

Once you’re in the Administration section, click on System Settings.

From here you can navigate to the Customization tab and select All for the Enable logging to plug-in
trace log field. Then click OK. This will create trace logs for all plugin events within your Dynamics
environment. In the context of InRule, this includes Create, Update, and Custom Action events.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 97 of
112

Viewing Plug-In Trace Log

To review Plug-In Trace Logs after they have been enabled, navigate to Settings > Plug-in Trace Log.

Here, there will be a list populated with all logged plugin events. If you do not see a list of logs in a similar

fashion as below, that means no plugin events have been logged.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 98 of
112

For this example, we will view the resulting log of executing a Custom Action from manually running rules.

To view a specific log, simply click on the hyperlinked Type Name text.

The first section within a specific trace log is the Configuration section, which details the various

configuration details about the event, including the Rule Configuration ID used, the event type, the plugin

step ID, and more. This section can be useful for debugging by providing a quick means of determining

whether or not the rules executed were properly configured.

The second section, the Execution section, is typically the most useful for debugging. It will provide a

block of all messages logged by the plugin during its execution, as well as any exception details, if the

event resulted in an exception.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 99 of
112

The message block logs rule execution “milestones.” In the event that the plugin fails to execute properly,

the message block is useful for determining at what point it is failing. The Exception Details block will

provide any related details to any exception thrown and is generally the first place to look to diagnose the

nature of a plugin execution failure.

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 100 of
112

Rule Execution Service Event Log

Event logging can be enabled in the Rule Execution App Service to monitor application events. These

logs can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Viewing Application Event Logs

To enable event logging, login to Azure and navigate to your App Service as created as a part of the

Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for Dynamics.

Once you’re looking at the overview of your app service, select Diagnose and solve problems

Select Diagnostic Tools

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 101 of
112

Select Application Events

You should see a list of all application events logged by the rule execution service, denoted with the

notification level, timestamp, event ID, source and web server. Selecting an event log will cause the log

details to appear in a separate column on the right-hand side of screen.

In the event of rule service issues, error events in this log stream can be useful for debugging purposes.

For example, below is an example of an error event log in an instance where the rule service contacting

the catalog looking for a rule application that didn’t exist:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 102 of
112

Typically, the response message at the beginning of the log and the Error Information section provide the

most pertinent debugging information.

Adjusting Logging Levels

The Application Event Log can quickly become bogged down with too many logs, making finding specific

logs that you may be interested in more difficult. To cut down on excessive informational logs, the Rule

Execution Service, by default, will be deployed with a logging level of “Warn,” meaning only Warnings and

Errors will be logged. However, this can be adjusted as needed for whatever your needs may be.

To adjust your Rule Execution Service’s logging level, navigate to your App Service as created as a part

of the Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for Dynamics.

Once you’re looking at the overview of your app service, select Application Settings in the settings

menu:

Scroll down until you see the Application settings section:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 103 of
112

Locate the inrule:logging:level setting. Note that its value is currently set to “Warn.”

Simply change the value to the desired logging level. You may select from one of the following levels that

the Rule Execution Service leverages:

Logging Level Details

Info Logs all application events, including Informational
events that track the general flow of the
application

Warn Logs Warning and Error events. Warning events
highlight abnormal or unexpected events in the
application flow, but don’t otherwise cause
application execution to stop

Error Logs only Error events. Error events result in the
halt
ed execution of the application’s current activity
due to a failure

For more detailed, technical explanations of what is included with each logging level, please reference the

Runtime Event Log Details documentation on the support site.

Once you have configured the setting to the desired to level, press Save at the top of the page:

http://support.inrule.com/help/irSDKHelp50/runtime_event_log_details.htm

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 104 of
112

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 105 of
112

Appendix J: Activating Your License Keys

Whether you’re deploying the Online or On-Prem solution will determine the appropriate method for

activating your InRule licenses. For Online installations, you will have an Azure license file provided to

you by InRule which will be deployed to your Azure app service via FTP. This process is detailed in the

Performing the Installation: In Azure section.

For On-Prem, you will leverage the InRule License Activation Utility and follow the walkthrough below.

1: Download the license activation utility:

Download and install the InRule Activation Utility from support.inrule.com on the server where you intend

to deploy the InRule Execution Service.

2: Run the Activation Utility:
Run the activation utility as an Administrator to install Event Log Source.

https://support.inrule.com/

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 106 of
112

3: Find your license keys:

Go to support.inrule.com and select Licensing Info on the left-hand navigation bar to find your irServer

license keys. Which one(s) you’ll need are dependent on what environment you intend to setup your

InRule components in.

https://support.inrule.com/

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 107 of
112

4: Enter your name, organization name and license keys into the

Activation Utility:

Enter your name, organization and the relevant license keys into the Activation Utility and press Activate

5: Verify your license keys have activated:

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 108 of
112

Appendix K: Upgrading Versions

In most cases, updating InRule for Dynamics is a relatively straight forward process. You will simply go

back through the installation steps in this document and deploy the new version of the Dynamics package

and execution service over the existing versions. This appendix discusses some special cases and

considerations to be aware of when upgrading.

SAS Key and other Customizations

Setting the SAS Key for communicating via the Service Bus is accomplished by customizing the default

endpoint included with the Dynamics solution. When this solution is re-deployed, the SAS Key is cleared

out. If you are deploying the Dynamics package with the included PowerShell script, you can avoid having

to re-set this value in Dynamics by ensuring you use the ‘SasKey’ and ‘SbNamespaceAddress’

parameters as documented here. If you are deploying the package via app source, you will need to set

the SAS Key again after upgrading by following the steps here. Regardless of the deployment method, if

you have used the Plugin Registration tool to change the ‘Run in User’s Context’ setting on the ‘InRule

Custom Action Step’, you will also need to set this back when updating.

Additionally, in the unlikely event you have made any other customizations to resources included in the

solution, such as the JavaScript web resources, you will need to re-apply these customizations after

updating the solution.

Upgrading from Cloud Service-based versions

Earlier versions of InRule for Dynamics used Azure’s legacy Cloud Service platform for the rule execution

service. The last version to support this was 5.1.1. Versions from 5.2.0 and on now use Azure App

Service for the same purpose. When upgrading from one of these versions, simply follow the steps for

creating, deploying and configuring the new Azure resources. Both the App Service and Cloud Service

versions use Azure Service Bus for communication with Dynamics, but in most cases, it is simpler to let

the provided ARM template provision a new Service Bus for use with the App Service. Continue following

the rest of the steps in the Deployment Guide to deploy the new version of the Dynamics package and

configure it to point to the new Service Bus and execution service. Once you’ve verified the new setup is

working, you can delete the old Cloud Service resources.

Switching from Dynamics On-Prem to Online

While there are no universal steps for transitioning from an on-prem to online version of Dynamics, there

are a few conceptual differences in the way InRule for Dynamics works in each that you should be aware

of. In on-prem installations, communication with the rule execution service is typically handled directly via

HTTP. In Dynamics Online, communication is handled via an Azure Service Bus resource that manages

the WCF Relay. Depending on the specifics of how your migration takes place, you may need to re-install

the Dynamics package entirely, or it may still be installed on the migrated instance, along with associated

config records. Either way you will need to follow all the steps in Performing the Installation: In Azure for

deploying to Azure, and ensuring that the required Service Bus information is updated in Dynamics. Once

you complete all these steps, you will need to update any existing InRule Configuration records to replace

the URI that was in the ‘Service Endpoint Id (or Uri)’ field with the appropriate value (d2e50ca1-ef4c-

e611-80e9-6c3be5a82b30)

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 109 of
112

Using the new Entity-based Configuration

From version 5.0.28 and on, step registrations can be configured from within Dynamics. This new system

uses Rules Configuration records and associates them to step registrations created in the Rules

Configuration UI. Before you can use this new configuration, you will need to delete any custom

registrations (registrations other than ‘InRule Custom Action Step’) under the OnlinePlugin:

Once you’ve deleted these registrations, you can create new ones from Dynamics using the steps in

Appendix F: Rules Configuration and Settings

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 110 of
112

Appendix L: Known Issues, Limitations and Troubleshooting

This portion of the document lists current known issues and limitations that may be encountered in usage

of the Integration Framework. Most should only be encountered in limited edge cases.

• v5.3.0 of the Dynamics Integration Framework is only compatible with Dynamics v9.0 for both
online and on-prem

• To deploy to a v8.2 Dynamics environment, view Section 4.3.4 of this deployment guide.

• In some cases, the rule helper can return nested entities from a query, which may cause
performance issues.

• Status cannot be set as part of a rule app. The status field can be added to the entity schema in a
rule app and can be read as part of executing a rule, but this value cannot be set by a rule.

Connections
Support for Connections is currently limited. You can bring in the Connection entity relationship through
irX as well as write rules against the Connection entity, however, the ability to write rules against the
Connected entity itself through the Connection relationship is not supported. For example, if you have an
Account Connected to a Contact, you can write rules against the Connection entity itself and do things
like change the Role, Role Type, or other fields on the Connection entity, however, you will not able to
write rules against the Contact entity. The Connection entity sits between the two Connected entities (in
this case Account and Contact) and contains all the Connection metadata describing the Connection.

Updating Entity Status via Rules

Currently, irX supports the updating of an entity’s status through rules for “standard” entities that can only

swap states between “Active” and “Inactive,” as well as for the Case entity. Given technical limitations

around how Cases are set to the “Resolved” status through rules, doing so currently auto-defines the

Case Resolution field as “Resolved by rules.” This can be edited within Dynamics itself after the fact if you

wish to change it, but there is no way to set the Case Resolution to anything different via rules at this

time.

Other entities with similar “Resolved” states such as Order are not supported at this time.

On-Prem Execution Mode
Running the plugin in an On-Prem Dynamics environment requires running outside of Sandbox mode.
Plugins in sandbox isolation mode run under partial trust, which prevents plugins from doing things like
accessing the file system and registry. This also prevents reflection from being used, which is necessary
for serializing Dynamics classes for communication over WCF. When using service endpoints to
communicate with Azure Service Bus, Dynamics provides helper classes that handle this serialization, but
no such classes are provided for On-Prem communication. It is worth noting that a side-effect of running
outside sandbox mode is Dynamics will not write to the plugin trace-log.

1-Minute Timeout

Because of Dynamics default configuration, a 1-Minute Timeout may occur when a request to the Azure

Service Bus takes longer than a minute to respond. This can occur because of latency between

Dynamics and the rule execution service, or anything else that causes the rule execution service to take

more than 1 minute to respond.

2-Minute Timeout

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 111 of
112

Dynamics plugin execution is configured to timeout when the plugin runs for more than two minutes. In

online implementations there is nothing that can be done about this behavior because the plugin cannot

be taken out of sandbox mode. Since On-Prem implementations must be run outside of sandbox mode,

this timeout period can be changed by updating the configuration.

S2S User Settings
If the ‘InRule Integration’ user is being used with the associated ‘InRule Integration Administrator’ role, the
entity permissions are not updated after the initial creation. If a new entity type is created, it will not
automatically be added to this security role and will have to be added manually. This user account can be
assigned to the ‘System Administrator’ role to alleviate the stale permission issue, as it is automatically
updated with permission when new entities are created.

Missing Entity Privilege Error

If, after attempting to run rules, you see an error like the one below, make sure that the ‘InRule

Integration’ user has been assigned the ‘InRule Integration Administrator’ role, and that the role has the

permissions needed to access any entities necessary.

Plugin Persistence Performance

When changes are made to entities as part of rule execution, these changes are bundled up and sent

from the execution service back to the plugin for saving. Performance testing in this area indicates you

can expect to be able to save around 10 changes a second, although other things can increase this time,

such as other plugins registered to the entity being updated, and initial plugin start-up times. This

performance constraint is specific to Dynamics overall (as compared to InRule) and has been verified with

direct testing using XRM with simple entities.

Common Troubleshooting Items

• When deploying the Azure WCF Relay (aka Azure Service Bus), you will need to ensure the

Azure subscription you are deploying the Relay into has the Relay provider enabled. This can

sometimes happen with older subscriptions that have not used relays before. For more

information about this issue, refer to the link here

• When deploying plugins without isolation in an on-prem environment, dynamics requires that the
user registering the plugin must be added as a Deployment Administrator from Deployment
Manager. If the registering user lacks the proper permissions, when deploying the package
Dynamics will return an error stating “Assembly must be registered in isolation.”

Application Insights Location Error

Application Insights resources are not available in every region, the list of supported regions can be found

in Microsoft’s Product Availability. By default the ARM template will attempt to deploy the App Insights

resource in the resource group specified for the template deployment. If this resource group is in one of

the unsupported regions you will get the following error:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-register-provider-errors
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=all®ions=non-regional,us-central,us-east,us-east-2,us-north-central,us-south-central,us-west-central,us-west,us-west-2

InRule for Microsoft Dynamics 365 Integration Framework Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 112 of
112

To fix this error we will have to choose a specific region for the Application Insights resource in the ARM

template parameters file.

1. Locate InRule.Dynamics.Service.parameters.json
The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined

in Section 3.3.3: Rule Execution App Service for Dynamics 365

2. Create an “appInsightsLocation” parameter

Open the file in your text editor of choice. First, create the appInsightsLocation” parameter at

the bottom of the parameters file. Set the value equal to a region where Application Insights

resources are offered.

3. Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section

3.3.3: Rule Execution App Service for Dynamics 365 as normal; your rule execution app service

will now deploy to the App Service Plan you defined in the steps above

• Should you encounter the following error repeatedly being logged in your AppService’s
Application Log:
Unhandled Exception: System.ServiceModel.AddressAlreadyInUseException: This
endpoint requires IsDynamic = False
You need to delete the Azure Relay that your Webjob is attempting to connect to and redeploy it
using the ARM Template included in the InRule deployment package.

