
Image4IO API Specification Doc

API
Version

Doc
Version

Date Author Description In-use

v0.0.1 - 26-July-2018 Image4IO API
Team

Not publicly available No

v0.0.2 - 28-July-2018 Image4IO API
Team

Not publicly available No

v0.0.3 v0.0.1 03-Aug-2018 Image4IO API
Team

The first documentation for
public alpha testing

No

v.0.0.3 v0.0.2 09-Aug-2018 Image4IO API
Team

Usage has been added No

v0.1.1 22-Apr-2019 Image4io API
Team

All API endpoint renewed. No

v0.1.2 02-May-2019 Image4io API
Team

Folder/path system added. No

v0.1.3 01-Jul-2019 Image4io API
Team

Minor Fixes. No

v0.1.4 26-Aug-2019 Image4io API
Team

Minor Fixes. Yes

Usage 2

Format 3
Authentication 3
Standard Error Responses 3

Methods 4
Upload 4
Get 6
Copy 8
Move 10
Delete 12
Delete Folder 14
Fetch 15
Create Folder 18
List Folder 20

Transformation 23
URL 23
Parameters 23

Important Notice for Alpha Testing 25
Server Cold Start Time 25

Glossary 26
Conventions 26
Status Codes 26

Usage

Format
The requests are made in terms of a link. The format is:

● https://api.image4.io/{version}/{request}

API versioning format is “​vMAJOR.MINOR.PATCH​”. In API url use only “​vMAJOR.MINOR​”.
An example of requesting to ​UPLOAD ​on version v0.1.1 would look like

● https://api.image4.io/v0.1/upload

Authentication

HTTP Basic Authentication

HTTP Basic Authentication needs to be used with every API request. API key should be used
as ​username​ and API Secret should be used as ​password​.

Standard Error Responses
Following response may be returned from any API call.

Status Response

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

401 {
 "​message​": "User is not authorized to access this resource
with an explicit deny"
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal Error"
}

Methods

Upload
Upload a chosen file or multiple files to a specified directory

Request

Method URL

POST {version}/​upload

Type Params Values

POST

GET

POST

POST

multipart/form-data

Path

usefilename

overwrite

file(s)

String

Bool

Bool

multipart/form-data

 ​multipart/form-data​ ​ is the requestor's file and must be sent with all ​Upload​ requests.
Length must be between 3 and 20 characters. The file must have one of the following
extensions: ​.jpg​, ​.png​, ​.gif​.
After uploading successfully, the file is assigned a unique id.

path ​[optional]
 ​path​ is the full path and specifies the directory where the file will be stored. Length must be
between 3 and 20 characters. If not specified, it defaults to the user’s root folder.

usefilename ​[optional]

overwrite ​[optional]

Response

Status Response

200 Response will be an object containing a list of the details of the file(s) as well
as additional information. Each file has the following structure.
{

 "original_name": ​<original name of uploaded file>​,
 "name": ​<name of the file with assigned id>​,
 "status": ​<status response>
}

An example response could be:

[

 "uploadedFiles": [

 {

 "original_name": ​"sample1.jpg"​,
 "name": ​"scdbaf52e-5f32-4c69-8592-568037be859b.jpg"​,
 "status": ​"Uploaded"
 },

 {

 "original_name": ​"sample2.jpg"​,
 "name": ​"06ec5218-8fc1-4139-8488-622dbc045168.jpg"​,
 "status": ​"Uploaded"
 }

]

]

400 {
 "​statusCode​": 400,
 "​message​":"There are no files to upload."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

Get
Get information about an image

Request

Method URL

GET {version}/​get

Type Params Values

GET name string

name

Name of file.

Response

Status Response

200 Response will be an object containing a list of the details of the file(s) as well
as additional information. Each file has the following structure.
{

 "name": ​<name of file>​,
 "userGivenName": ​<userGivenName>​,
 "size": ​<size of file>​,
 "format": ​<format of file>​,
 ​"width": ​<width of file>​,
 "height": ​<height of file>​,
 "createdAtUTC": ​<created time>​,
 "updatedAtUTC": ​<updated time>
}

An example response could be:

{

 "name": "​image.jpg​",

 "userGivenName": "​image2.jpg​",
 "size": ​2749​,
 "format": "​png​",
 ​"width": ​200​,
 "Height":​67​,
 "createdAtUTC":​"2019-04-20T12:28:21.133"​,
 "updatedAtUTC": ​"2019-04-20T12:28:21.133"
}

400 {
 "​statusCode​": 400,
 "​Message​":"name parameter is required."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

Copy
Copy a file with a new name

Request

Method URL

PUT {version}/​copy

Type Params Values

GET

GET

source

target_path

string

string

source

 ​source​ is the file which is going to be copied.

Target_path ​[optional]
 ​target_path​ is the directory for copy of source image. Length must be between 3 and 20
characters and must include extension. Default value is root.

Response
Status Response

200 Response will be an object containing details of the copied file as well as
additional information. The object has the following structure:

{

 "copiedFile": {

 "name": ​<name of the new file with assigned id>​,
 "status": ​<status response>
 ​}
}

An example response could be:
{

 "copiedFile": {

 "name": ​"dir/677c7737-257b-41b6-befd-692f3c4ca26d.jpg"​,

 "status": ​"Copied"
 ​}
}

400 {
 "​statusCode​": 400,
 "​message​":"'source' parameter is required."
}

400 {
 "​statusCode​": 400,
 "​message​":"There is no file with that name."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

Move
Move a file to a different directory

Request

Method URL

PUT {version}/​move

Type Params Values

GET

GET

source

target_path

string

string

source

 ​source​ is the file which is going to be moved.

Target_path ​[optional]
 ​target_path​ is the directory for copy of source image. Length must be between 3 and 20
characters and must include extension. Default value is root.

Response
Status Response

200 Response will be an object containing details of the moved file as well as
additional information. The object has the following structure:

{

 "movedFile": {

 "name": ​<name of the new file with assigned id>​,
 "status": ​<status response>
 ​}
}

An example response could be:
{

 "movedFile": {

 "name": ​"dir/677c7737-257b-41b6-befd-692f3c4ca26d.jpg"​,

 "status": ​"Moved"
 ​}
}

400 {
 "​statusCode​": 400,
 "​message​":"'There is no file with that name."
}

401 {
 "​statusCode​": 401,
 "​message​":"'Source parameter is required."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

Delete
Delete a file

Request

Method URL

DEL {version}/​deletefile

Type Params Values

GET name string

name

The file that is to be removed.

Response

Status Response

200 Response will be an object containing details of the deleted file as well
}

400 {
 "​statusCode​": 400,
 "​message​":"'source' parameter is required."
}

400 {
 "​statusCode​": 400,
 "​message​":"There is no file with that name."
}

Status Response

200 Response will be an object containing details of the deleted file as well as

additional information. The object has the following structure:

{

 "deletedFile": {

 "name": ​<name of the new file with assigned id>​,
 "status": ​<status response>
 ​}
}

An example response could be:
{

 "deletedFile": {

 "name": ​"dir/677c7737-257b-41b6-befd-692f3c4ca26d.jpg"​,
 "status": ​"Deleted"
 ​}
}

400 {
 "​statusCode​": 400
 "​message​":"There is no file with that name."
}

401 {
 "​statusCode​": 401,
 "​message​":"'name' parameter is required."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error."
}

Delete Folder
Delete a folder.

Request

Method URL

DELETE {version}/​deletefolder

Type Params Values

GET path string

path

The folder that is to be removed.

Response

Status Response

200 Response will be an object containing details of the fetched file as well as
additional information. The object has the following structure:

{

 "deletedFolder": {

 "name": ​<name of the deleted folder>​,
 "status": ​<status response>
 ​}
}

An example response could be:
{

 "deletedFolder": {

 "name": ​"/folder"​,
 "status": ​"deleted"
 ​}

400 {
 "​statusCode​": 400,
 "​message​":"Path is need to be specified."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

404 {
 "​statusCode​": 404,
 "​message​":Folder is not found."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error."
}

Fetch
Fetch a source from a link

Request

Method URL

POST {version}/​fetch

Type Params Values

GET

GET

from

target_path

string

string

from

The url that will be fetched ​from​.

folder

 ​target_path​ is the directory for copy of source image. Length must be between 3 and 20
characters and must include extension.

Response

Status Response

200 Response will be an object containing details of the fetched file as well as
additional information. The object has the following structure:

{

 "fetchedFile": {

 "name": ​<name of the new file with assigned id>​,
 "status": ​<status response>
 ​}
}

An example response could be:
{

 "fetchedFile": {

 "name": ​"dir/677c7737-257b-41b6-befd-692f3c4ca26d.jpg"​,
 "status": ​"Fetched"
 ​}
}

400 {
 "​statusCode​": 400,
 "​message​":"File source is invalid."
}

400 {
 "​statusCode​": 400,
 "​message​":"Not supported file type."
}

400 {
 "​statusCode​": 400,
 "​message​":"There is no file with that name. "
}

401 {
 "​statusCode​": 401,

 "​message​":"'from' is not fully qualified url."
}

401 {
 "​statusCode​": 401,
 "​message​":"'from' parameter is required."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error."
}

Create Folder
Create a new folder

Request

Method URL

POST {version}/​path

Type Params Values

GET path string

path

Name of new folder.

Response

400 {
 "​statusCode​": 400,
 "​Message​":"name parameter is required."
}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

Status Response

200 Response will be an object containing a list of the details of the file(s) as well a
additional information. Each file has the following structure.

{

 "createdFolder": {

 "Name":"​new_folder​",
 "Status":"​created​",
 }

}

401 {
 "​statusCode​":,
 "​message​":"You are not authorized to do this operation."
}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error"
}

List Folder
List all stored files.

Request

Method URL

GET {version}/​listfolder

Type Params Values

GET path string

Response

Status Response

200 Response will be an object containing details of the fetched file as well as
additional information. The object has the following structure:

{

 "folders": [

 {

 "name": ​<name of the folder>​,
 "parent": ​<name of parent folder>
 ​}
],

 "files": [

 {

 "orginal_name": ​<original name of the file>​,
 "name": ​<name of the file with assigned id>​,
 "size": ​<size of file in bytes>​,
 "format": ​<format of image>​,
 "width": ​<width of image>​,
 "height": ​<height of image>​,
 "createdAt": ​<creation date of file in UTC>​,
 "updatedAt": ​<update date of file in UTC>
 ​}

]

}

An example response could be:
{

 "folders": [

 {

 ​"orginal_name":​ "testfolder",
 ​"name": ​"testparent",
 ​}
],

 "files": [

 {

 ​"orginal_name":​ "tesstst",
 ​"name": ​"6f3e2ad3-00da-490c-a8d2-e3f1a372.jpg",
 ​"size":​ 186677,
 ​"format":​ "jpg",
 ​"width":​ 975,
 ​"height":​ 1300,
 ​"createdAt":​ "2019-04-20T12:27:31.48",
 ​"updatedAt":​ "2019-04-20T12:27:31.48"
 ​},
 {

 "orginal_name": ​"tesstst",
 ​"name":​ "e7087a36-e6cc-432e-bb67-c57b42a9e.jpg",
 ​"size":​ 186677,
 ​"format":​ "jpg",
 ​"width":​ 975,
 ​ "height":​ 1300,
 ​"createdAt":​ "2019-04-20T12:28:21.133",
 ​"updatedAt":​ "2019-04-20T12:28:21.133"
 ​}
]

}

401 {
 "​statusCode​": 401,
 "​message​":"You are not authorized to dı this operation."
}

404 {
 "​statusCode​": 404,
 "​message​":"Folder is not found."

}

500 {
 "​statusCode​": 500,
 "​message​":"Internal error."
}

Transformation

URL
https://cdn.image4.io/{cloudname}/{image-folder-and-name}

URL structure is shown above.

Parameters
Width | ​w
The width of the resulting picture is denoted as ​w​. If a transformation takes only one input, either ​h
or ​w​, but both are entered, it will take ​w​ as standard.

Height | ​h
The height of the resulting picture is denoted as ​h​. If a transformation takes only one input but both
are entered, it will disregard ​h​ and will take ​w​ instead.

Fit Mode | ​fit
The style of transformation that will be done to the image. Two modes possible:

● saveratio​ - saves the width-to-height ratio of the resulting image. Takes either ​w​ or ​h​.
● crop​ - cuts off the edges. Takes both ​w​ and ​h​. If only one parameter is specified, the

cropped image will adjust the other to keep the width-to-height ratio of the original image.

If none specified, it defaults to ​saveratio​.

Maximum Width, Minimum Width | ​maxw​, ​minw
The maximum or minimum value ​w​ will be adjusted to if ​w​ is not specified. Only applicable if ​fit
mode is set as ​saveratio​.

Maximum Height, Minimum Height | ​maxh​, ​minh
The maximum or minimum value ​h​ will be adjusted to if ​h​ is not specified. Only applicable if ​fit
mode is set as ​saveratio​.

Crop Region | ​c
The specified region the image will be cropped in is denoted in ​c​. Only applicable if ​fit​ mode is
set as ​crop​. The region can be denoted as:

● top, left
● top, right
● bottom, left
● bottom, right
● center

If no valid region is entered, it defaults to ​top, left​.

Format | ​f
The format of the resulting image is denoted in ​f​. Formats must be one of the following:

● gif
● png
● jpeg

If none or different formats are entered, it defaults to jpeg.

Note: Transforming a gif image will always result in jpeg encoding and ​Content-Type:
image/jpeg​ header.

Quality | ​q
The resulting quality of the image. Must be a value between 0 and 100. If entered outside of range
or not specified, it defaults to 75.

Important Notice for Alpha Testing

Server Cold Start Time
In our alpha testing server, there is a latency for the first call to the API after a long period of time.
Due to having few test users you may experience this latency. After the first successful call,
however, successive responses will be more quickly.

Glossary

Conventions
● Client​ - Client application.
● Status​ - HTTP status code of response.
● All the possible responses are listed under ‘Responses’ for each method. Only one of them

is issued per request server.
● All response are in JSON format.
● All request parameters are mandatory unless explicitly marked as ​[optional]

Status Codes
All status codes are standard HTTP status codes. The below ones are used in this API.

2XX ​-​ ​Success of some kind
4XX ​-​ ​Error occurred in client’s part
5XX ​-​ ​Error occurred in server’s part

Status Code Description

200 OK

400 Bad request

401 Authentication failure

426 Upgrade required

500 Internal server error

