
Unsupervised Machine Learning 
with DataVisor
DISCOVER HOW DATAVISOR’S PIONEERING 
UNSUPERVISED MACHINE LEARNING ENGINE BROKE NEW 
GROUND IN THE FIGHT AGAINST MODERN DIGITAL FRAUD, 
AND LEARN WHY IT’S STILL THE REIGNING STANDARD 
FOR PROACTIVE, REAL-TIME FRAUD PREVENTION.

DataVisor’s Unsupervised Machine 
Learning Engine is built upon our patented 
and proprietary unsupervised machine 
learning (UML) algorithms. 
The DataVisor UML Engine is a central 
component of both our approach and our 
solutions and is widely deployed across 
industries and enterprises.
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About Unsupervised Machine 
Learning

UML is a category of machine learning that works 
without requiring labeled input data. Instead, it infers 
a function to describe the hidden structures of 
“unlabeled” input data points. 

Common UML approaches today include anomaly 
detection techniques that attempt to identify outliers, 
and clustering and graph analysis techniques that 
focus on studying the relationships and connectivity 
among input data. 

Using the clustering method (the separation of 
data into groups of similar objects), an algorithm 
gathers observations into groups one by one, with 
each group containing one or more features. In the 
process, UML focuses on estimating connections 
strength between all data points, and thus, a UML 
algorithm can begin forming clusters once it learns 
how to recognize similarities.

Figure 1: The DataVisor UML engine looks across all accounts (like dots in a painting) to see the overall 
picture
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About the DataVisor Unsupervised 
Machine Learning Engine

The DataVisor UML Engine is developed based 
on this latter approach, combining clustering 
techniques and graph analysis algorithms to 
discover correlated fraudulent or suspicious patterns 
from unlabeled data. By analyzing the distance and 
connectivity between data points that represent 
accounts and their activities across a large time 
period, the DataVisor UML Engine can automatically 
discover new fraud attacks and techniques, including 
mass registration, account takeover, money 
laundering, and more. 

THE DATAVISOR UML ENGINE 
DIFFERENCE

The DataVisor UML Engine differs from other 
approaches in several ways. Some of its 
differentiating characteristics include the following: 

 � Proactive detection of new attacks     
Because the UML Engine does not require labels 
or training data, it can start delivering detection 
results quickly, and in real time. This enables 
early detection and adaptive responses towards 
changing attack patterns. The UML Engine 
regularly powers detection rate increases of 
30-50% over existing systems and can detect 
malicious activity even at the point of account 
application or registration. 

 � Real-time account correlation                  
The UML Engine processes all events and 
account activities together to analyze the 
correlations and similarities across millions—or 
even hundreds of millions—of accounts. It is able 
to reveal subtle, hidden structures across fake, 
fraudulent, and malicious accounts in real-time. 

 � Effective digital signal management          
The UML Engine both feeds into—and ingests 
information from—the DataVisor Global 
Intelligence Network (GIN). The GIN is optimized 
for the consolidation and computation of digital 
intelligence from multiple digital fingerprints. 
In addition, the GIN aggregates learned attack 
patterns to derive fine-grained, rich signals that 
improve the overall detection performance of the 
UML Engine. 
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Comprehensive Fraud Intelligence that Provides Fine-Grained Signals and Risk Scores

410 Million+ IP addresses

Financial Services E-Commerce Social Platform

Mobile & Gaming Telecom & Travel Insurance

5.3 Million+ User agent strings

3.6 Million+ Email domains 160,000+ Device types

300,000+ OS versions 700,000+ Phone prefixes

Insight from 4.1 Billion+ Users and 800 Billion+ Events

ADDITIONAL BENEFITS OF THE 
DATAVISOR UML ENGINE 

In additional to its distinctions against other 
detection methods, the DataVisor UML Engine has 
the following additional advantages: 

 � Input data flexibility                              
Common questions for any machine learning 
algorithm are what input data fields are needed 
and how much data is required to be effective. 
The Data Visor UML Engine is notably more 
tolerant of missing data fields and low data 
volumes. 

 � Low false positives                             
Unlike anomaly detection and other 
unsupervised approaches that generate many 
false positives, the DataVisor UML Engine 
delivers highly accurate results and can be used 
directly through APIs without manual review. 
Accuracy rates are uniformly above 90% and 
regularly meet or exceed 99%. 

 � Low re-tuning overhead                                
The UML Engine does not require frequent 
retunings as its predictive power is not based on 
intelligence derived from historical experience. It 
is proactive and adaptive to new changing attack 
patterns, and can, therefore, maintain long-
term high performance without re-tuning. This 
is different from supervised machine learning 
models, which decay in effectiveness over time.

 � Transparent detection reasons                        
Clusters of correlated accounts detected by 
the UML Engine have clear indicators of what 
attributes and values are shared across them, 
and what hidden links are present. As a result, 
the UML Engine outputs more transparent and 
convincing detection reasons as compared to 
other machine learning-based approaches. 

Figure 2:  DataVisor Global Intelligence Network
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THE DATAVISOR UML ENGINE IN 
ACTION

Here is an example of how the UML Engine 
detected a real-world fraud ring that had previously 
evaded other detection systems. The fraud ring 
in this anonymized example comprises over 
200+ credit card accounts from a large banking 
institution. 

The accounts all resided in low-risk regions, had 
high FICO scores, matched bureau data, and were 
not in the existing fraud database. In short, they did 
not have any risky signals that were similar to any 
previously known or seen attacks. As a result, all 
of these accounts passed safely through existing 
fraud detection systems. 

The DataVisor UML Engine not only examined 
the above data dimensions but also looked at 
other digital attributes of credit card applications 
across all accounts. In doing so, the UML Engine 
uncovered subtle suspicious correlations that were 
indicative of the presence of a fraud ring: 

 � All the emails evidenced a shared pattern 
of having been created using the account 
holder’s first name, last name, initial, and 
birthday. 

 � The IP addresses were all associated with 
high-risk data centers. 

 � The accounts all used an older-model 
iPhone—iPhone 5 or 5s—with the same OS 
version. 

 � All of the accounts performed their activity 
with Chrome, despite Safari being the default 
browser app for iPhones.

In this use case, the UML Engine was able to reveal 
that these 200+ accounts belonged to the same 
fraud ring, and was able to do so right at the point of 
application. The UML Engine assigned the accounts 
a score of 0.92 (out of 1.0), indicating a high 
likelihood of their being fraudulent. 
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A Technical Deep Dive

The DataVisor UML Engine also works in concert 
with other DataVisor tools, including the Supervised 
Machine Learning Engine, the Global Intelligence 
Network (GIN), and the Automated Rules Engine, 
which maintains the transparent nature of rules-
based systems but automatically suggests rules to 
be created, modified, or deprecated. 

As shown in Figure 3, the input to the UML Engine 
is raw data in the form of either continuous event 
streams (e.g., from a real-time integration setting) or 
multiple batch input files that describe user account 
profiles or different types of account activities (e.g., 
in a batch integration setting with various event 
logs). In a real-time setting, the output is a score, 
and reason codes, for each input event. In a batch 
setting, the output is a list of detected suspicious 
accounts with associated scores and reason codes. 
The UML Engine output also feeds into the threat 
dashboard, which visualizes attack rings and allows 
investigation of each detected incident and account. 

Figure 3: The DataVisor UML Solution Architecture
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In between the input and output, there are four major 
steps that the UML Engine can perform: 

 � Dynamic feature extraction 

 � Unsupervised attack ring detection 

 � Supervised detection (optional)

 � Result categorization and ranking 

These four steps precisely identify fraudulent 
and malicious accounts that combine as large 
fraud rings. Detecting such a fraud ring is done 
by discovering the hidden links among the 
corresponding account-based data points. All of the 
algorithms are run on top of a distributed big data 
infrastructure with algorithmic optimizations that 
enable real-time detection.
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Dynamic Feature Extraction 

The goal of unsupervised machine learning is to 
generate a comprehensive and meaningful set 
of features to describe each input account. The 
“unsupervised” nature means the system has no 
prior knowledge of new attack patterns, nor does 
it know in advance which features will be effective. 
The UML Engine is accordingly designed to operate 
across a very high-dimensional feature space and be 
comprehensive in extracting features. 

The UML Engine generates the following categories 
of features to describe each user account, as shown 
in Figure 4. 

 � Profile information: Demographic 
information associated with an account, 
usually provided at the point of application 
or registration. Information may include 
user account nickname, income range, age, 
gender, and address. 

 � Behaviors and activities: What the account 
has done, and when; for example, payment 
events which include a timestamp, payment 
amount, and method. 

 � Origins and digital fingerprints: Information 
describing the access methods of an 
account, including its device type and 
version, browser information, IP address, and 
geographic origins. 

 � Contents and metadata: Text and pictures 
generated by an account, such as comments, 
profile photos, and phone call records. 

 � Relationships between accounts: 
Interactions and relationships between 
different accounts; for example, one account 
sending money to other accounts that are 
friends or contacts. 

#1
STEP
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Figure 4: The UML Engine Dynamic Feature Extraction. The top line shows some example features that 
DataVisor extracts from the raw input data.
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For unstructured text, the UML Engine leverages 
Natural Language Processing (NLP) techniques 
to derive rich textual and contextual features. For 
image input, the UML Engine supports meta-data 
attributes such as image title, creation time, location, 
generation source, format, and resolution (this 
can be expanded to support more sophisticated 
features). For relationship information between 
accounts, the UML Engine describes them using 
graph attributes such as directional and bi-
directional links, degrees of nodes, edge weights, 
graph neighborhood features, and community 
features. 

This process is dynamic in that, for each category, 
the UML Engine will derive as many features as 
applicable based on the input data schema—
sometimes as high as hundreds of thousands. 
In certain cases, literally millions of features are 
created. For example, based on input account event 
types and sequences, the UML Engine can derive 
a variety of features including event frequencies, 
velocities, time interval gap distributions, diurnal 
patterns, and sub-sequence patterns. When the input 
data fields need to change or increase over time, the 
number of feature dimensions can automatically 
adjust accordingly.  

The UML Engine’s dynamic feature extraction differs 
from other feature engineering approaches in four 
major ways:

 � Unrivaled domain expertise: The features 
created from input data are designed based 
on decades of experience researching 
and fighting real-life fraud, abuse, money 
laundering, and more. 

 � Enhanced intelligence: The features are 
enriched with DataVisor’s Global Intelligence 
Network, particularly for digital information. 

 � Broad scope: The features describe both 
structured and unstructured input data, as 
well as a variety of relationships across 
accounts, whereas most existing solutions 
are based on a fixed set of pre-defined 
features from structured input data. 

 � Flexibility: The list of features dynamically 
expands when input data has more fields in 
the schema.
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Unsupervised Attack Ring 
Detection 

In this step, the UML Engine performs correlation 
analysis across all accounts and identifies attack 
rings. An attack ring can be broadly defined as a 
collection of malicious accounts that have strong 
similarities or correlations in their features, and 
which are likely operated by a single individual 
or group of attackers. Addition steps within this 
process include clustering and graph analysis. 

STEP 2.A: CLUSTERING ANALYSIS 
Based on the input feature vectors, the UML Engine 
first identifies suspicious clusters of accounts that 
have strong similarities or correlations in the high-
dimensional feature space. The keys to this step 
are reducing feature dimensions and determining 
the distance function that computes the distance 
between data points. When the distance function 
is properly designed with a subset of important 
features, only truly suspicious accounts will form 
tight clusters while legitimate accounts will not 
group. 

Other methodologies create clusters of accounts 
and then rely on anomaly detection approaches to 
separate groups. These approaches can generate 
very noisy results and typically require another layer 
of human intervention. In contrast, DataVisor’s 
clustering approach is much more accurate at 
finding true attack rings. 

#2
STEP
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The selection of features and distance functions are 
guided in the following manner: 

 � Important features are assigned higher 
weights; their weighted importance is based 
on the industry sector, and targeted attacks. 
Here we leverage rich domain experience to 
guide defining important feature categories 
for different setups. For example, knowing 
that an account’s address is valid and that 
their information matches credit bureau data 
is important when detecting bank account 
application fraud. On the other hand, this 
information is less important when detecting 
spam attacks in social networks, where 
legitimate users often provide an empty or 
vague address when signing up. 

 � The DataVisor Global Intelligence Network 
(GIN) can optionally augment the UML Engine 
with initial detection results based on digital 
fingerprint signals. The initial results provided 
by GIN are typically noisy but provide insights 
that guide the selection of important feature 
dimensions and their weights. In other 
words, signals from GIN do not lead to final 
clustering results but enhance the confidence 
of feature selection. For example, sharing IP 
addresses from a hotel location is not very 
suspicious, while sharing proxy IP addresses 
is a lot more suspicious. 

 � The UML Engine performs a variety of 
statistical analyses of various feature 
distributions from the raw input data. These 
feature distributions also serve as input to 
help auto-infer the most important feature 

dimensions.

With the important feature dimensions and distance 
functions selected, the UML Engine can then group 
all data points to generate clusters. The clustering 
process is iterative and non-exclusive. The engine 
iteratively clusters data points based on different 
combinations of selected features, weights, and 
distance functions. As a result, each account can 
belong to different clusters, where each cluster is 
created by a different set of criteria. For example, an 
account can belong to a cluster with address and 
location features being more important dimensions, 
and simultaneously belong to another cluster with 
event sequences and behavior patterns being more 
dominant features. 

The detection does not always depend on the 
existence of important features. A strong correlation 
of multiple accounts across a large number of 
seemingly unimportant features is also an indication 
of suspiciousness, and the UML Engine considers 
this case as well. For example, a group of accounts 
that follows almost the same behavior pattern (e.g., 
when they log in, when they log out, when they 
update account information) is still very suspicious, 
even when, traditionally, these behaviors may not be 
considered very important features for transaction 
fraud. 
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During each iteration, the selected features, 
their weights, and the distance functions, are all 
automatically adjusted until they meet all of the 
following criteria: 

 � The ratio of intra-cluster distance to inter-
cluster distance is small enough based 
on a threshold. The threshold can be pre-
defined and can be adjusted according to 
the tradeoffs between coverage and false 
positives. 

 � The clustering results stabilize and converge. 

 � The output clusters capture at least a certain 
percentage of the Global 

 � Intelligence Network classification results. 
(Optional, as this can be a noisy measure.) 

Given the high dimensionality of the data and the 
highly iterative process, the challenge is to bound the 
computation complexity so that the clusters can be 
computed and converge quickly, even in a real-time 
setting. The DataVisor UML Engine’s efficient and 
scalable proprietary algorithms represent a major 
breakthrough for selecting features and computing 
distance functions with the following distinguishing 
characteristics: 

 � This approach is much more efficient 
than common methods of dimensionality 
reduction, such as Principal Component 
Analysis (PCA), and does not assume that the 
input data follows a linear relationship.

 � The resulting clusters are highly accurate in 
pinpointing the exact fraud type, thanks to 
built-in domain knowledge and proprietary 
algorithms that automatically optimize 
clustering results towards different use 

cases. 

Figure 5: The UML Engine Clustering Analysis 
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STEP 2.B: GRAPH ANALYSIS
Clustering results produce suspicious groups of 
accounts that are highly similar or correlated on 
either important features or over a large number 
of feature dimensions. The UML Engine further 
consolidates these results using graph analysis to 
link clusters that share similar accounts or strong 
features. As a graph problem, the clusters are 
nodes, and edges link these similar clusters. The 
edge weight between two clusters is a function of 
the number of shared accounts, the shared feature 
dimensions, and the cluster sizes. 

This process examines a different aspect of 
connectivity between accounts. It discovers not 
just direct correlations but also indirect, transitive 
similarities and correlations across accounts (e.g., 
this process can group accounts A and C together if 
A is similar to B and B is similar to C). After the graph 
analysis, a “weak” cluster may be linked together 
with several “strong” clusters to raise the confidence 
of detection of this weak cluster. This process 
enhances the detection coverage and increases 
detection accuracy. 

Tightly connected sub-graph components usually 
indicate the existence of attack rings. 



16

This is an optional step where the output from the 
unsupervised attack ring detection can serve as 
training data to automatically train a supervised 
learning model and detect additional individual 
malicious accounts that share similar patterns with 
the already captured ones. 

Compared to common supervised approaches, the 
DataVisor Supervised Learning Detection involves two 
different design decisions: 

 � It is optimized for fast and constant retraining 
without manual tuning so that the outputs 
from the unsupervised model can help adjust 
the model quickly. 

 � It is optimized for high accuracy and low false 
positive rates so that the output results can 
directly be applied to client production use. 

This step outputs a set of detected individual 
bad accounts, which will then be combined with 
the detected attack rings to maximize detection 
coverage, according to coverage and false positive 
requirements. 

Supervised Learning Detection 
(Optional)#3

STEP
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The final step is to rank detected accounts, assign 
them confidence scores, and categorize attack rings 
by the nature of their attacks. 

All accounts are assigned a score from 0.0 to 1.0, with 
0.0 being not suspicious at all and 1.0 being most 
suspicious. The scores help guide the policy setting 
for client actions, such as auto-blocking accounts 
that are 0.8 and above and manually reviewing 
the remaining ones above 0.0 (or another chosen 
threshold). Result ranking and score assignment uses 
a function based on the associated attack ring size 
and the corresponding cluster distances. Intuitively, 
the smaller the cluster distance is, and the larger the 
ring size is, the higher the score is. 

Categorization is the last step in this process. This 
includes adding reason codes to each cluster, that 
highlight the important characteristics of the attack 
ring. To categorize attack rings, the UML Engine 
classifies them by many attributes including event 
types, attack techniques, bot versus human patterns, 
and account ages. The following shows some 
example categorizations: 

 � Automated account opening fraud 

 � Mass account takeover password testing ring 

 � Successful account takeover spam ring 

 � Manual transaction fraud 

 � Structured transfers indicative of money 
laundering 

 � Rapid transfer of funds indicative of money 
laundering 

This categorization helps users to determine 
appropriate actions. For example, for account 
takeover fraud rings, a client may not wish to directly 
shut down the accounts, opting instead to contact 
the owners to help them recover their accounts. 

Result Categorization and 
Ranking#4

STEP
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Architecture and Achieving 
Real-Time Detection 

The entire DataVisor UML Engine—from 
computation to data access and storage—is built 
on a hyper-modern big data infrastructure. Apache 
Spark, HDFS, Hadoop, Apache HBase, and Casandra, 
Kafka are all being used to support the system in 
different capacities. 

Figure 7 shows the system diagram. The left side of 
the figure is a batch UML engine implemented on top 
of Apache Spark. If real-time processing is required, 
the UML engine additionally includes a real-time 
component shown on the right side of the figure.

Figure 6: The UML Engine Big Data Infrastructure Stack

Figure 7: The UML Engine Architecture
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The real-time component is implemented as a 
distributed, in-memory system with the same 
algorithmic logic as the batch system. As events 
come in, the real-time component keeps historical 
account states and continuously updates and 
evaluates them. The clustering and graph analysis 
is triggered—on demand, by an incoming event—to 
search and analyze a subset of related accounts and 
events. Due to memory and latency constraints, the 
system will perform a parallel search of the most 
relevant clusters and sub-graph components. This 
search expands when more space and time become 
available. The batch system periodically calibrates 
the real-time component for computational drifts 
caused by memory and latency constraints, so that 
the real-time results are close to the fidelity of a 
batch system. 

Both the batch system and the real-time component 
are built using the same algorithms, but they are 
designed with different optimization goals. The 
batch system targets maximal coverage and 
accuracy, while the real-time system also needs to 
meet latency and throughput requirements. The 
performance of the real-time system with respect to 
the batch system is easily forecasted by latency and 
throughput requirements versus machine capacity. 
The real-time system is built to be horizontally 
scalable that requirements can be easily met with 
additional machine resources. 
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Concluding Thoughts 

Unsupervised machine learning technologies enable 
an entirely new way of combating even the most 
complex and sophisticated modern fraudsters. 
These technologies power more proactive and 
adaptive approaches for catching new and 
continually evolving attacks. 

The key challenges are handling the vast volume of 
data in the new digital era, and being able to analyze 
all accounts and events at once to discover patterns 
rapidly and accurately. 

The DataVisor UML Engine was the first of its kind 
in the field, and as the backbone of all DataVisor 
offerings today, it remains the leading unsupervised 
machine learning solution for addressing the 
challenges of modern digital fraud. To date, 
DataVisor protects more than 4.2 billion accounts 

7
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About DataVisor
DataVisor is the leading fraud detection platform powered by 
transformational AI technology. Using proprietary unsupervised 
machine learning algorithms, DataVisor restores trust in digital 
commerce by enabling organizations to proactively detect and act 
on fast-evolving fraud patterns, and prevent future attacks before 
they happen. Combining advanced analytics and an intelligence 
network of more than 4B global user accounts, DataVisor protects 
against financial and reputational damage across a variety of 
industries, including financial services, marketplaces, ecommerce, 
and social platforms.

For more information on DataVisor:

info@datavisor.com

www.datavisor.com

967 N. Shoreline Blvd.  |  Mountain View  |  CA 94043


