
Unsupervised Machine Learning
with DataVisor
DISCOVER HOW DATAVISOR’S PIONEERING
UNSUPERVISED MACHINE LEARNING ENGINE BROKE NEW
GROUND IN THE FIGHT AGAINST MODERN DIGITAL FRAUD,
AND LEARN WHY IT’S STILL THE REIGNING STANDARD
FOR PROACTIVE, REAL-TIME FRAUD PREVENTION.

DataVisor’s Unsupervised Machine
Learning Engine is built upon our patented
and proprietary unsupervised machine
learning (UML) algorithms.
The DataVisor UML Engine is a central
component of both our approach and our
solutions and is widely deployed across
industries and enterprises.

2

Table of Contents

ABOUT UNSUPERVISED MACHINE LEARNING

ABOUT THE DATAVISOR UNSUPERVISED MACHINE LEARNING ENGINE

The DataVisor UML Engine Difference

Additional Benefits of the DataVisor UML Engine

The DataVisor UML Engine in Action

A TECHNICAL DEEP DIVE

STEP #1: DYNAMIC FEATURE EXTRACTION

STEP #2: UNSUPERVISED ATTACK RING DETECTION

STEP # 3: SUPERVISED LEARNING DETECTION (OPTIONAL)

STEP #4: RESULT CATEGORIZATION AND RANKING

ARCHITECTURE AND ACHIEVING REAL-TIME DETECTION

CONCLUDING THOUGHTS

...3

............4

...4

 ..5

...6

..7

..9

..12

............................16

..17

................................18

...20

2 3

About Unsupervised Machine
Learning

UML is a category of machine learning that works
without requiring labeled input data. Instead, it infers
a function to describe the hidden structures of
“unlabeled” input data points.

Common UML approaches today include anomaly
detection techniques that attempt to identify outliers,
and clustering and graph analysis techniques that
focus on studying the relationships and connectivity
among input data.

Using the clustering method (the separation of
data into groups of similar objects), an algorithm
gathers observations into groups one by one, with
each group containing one or more features. In the
process, UML focuses on estimating connections
strength between all data points, and thus, a UML
algorithm can begin forming clusters once it learns
how to recognize similarities.

Figure 1: The DataVisor UML engine looks across all accounts (like dots in a painting) to see the overall
picture

4

About the DataVisor Unsupervised
Machine Learning Engine

The DataVisor UML Engine is developed based
on this latter approach, combining clustering
techniques and graph analysis algorithms to
discover correlated fraudulent or suspicious patterns
from unlabeled data. By analyzing the distance and
connectivity between data points that represent
accounts and their activities across a large time
period, the DataVisor UML Engine can automatically
discover new fraud attacks and techniques, including
mass registration, account takeover, money
laundering, and more.

THE DATAVISOR UML ENGINE
DIFFERENCE

The DataVisor UML Engine differs from other
approaches in several ways. Some of its
differentiating characteristics include the following:

 � Proactive detection of new attacks
Because the UML Engine does not require labels
or training data, it can start delivering detection
results quickly, and in real time. This enables
early detection and adaptive responses towards
changing attack patterns. The UML Engine
regularly powers detection rate increases of
30-50% over existing systems and can detect
malicious activity even at the point of account
application or registration.

 � Real-time account correlation
The UML Engine processes all events and
account activities together to analyze the
correlations and similarities across millions—or
even hundreds of millions—of accounts. It is able
to reveal subtle, hidden structures across fake,
fraudulent, and malicious accounts in real-time.

 � Effective digital signal management
The UML Engine both feeds into—and ingests
information from—the DataVisor Global
Intelligence Network (GIN). The GIN is optimized
for the consolidation and computation of digital
intelligence from multiple digital fingerprints.
In addition, the GIN aggregates learned attack
patterns to derive fine-grained, rich signals that
improve the overall detection performance of the
UML Engine.

4 5

Comprehensive Fraud Intelligence that Provides Fine-Grained Signals and Risk Scores

410 Million+ IP addresses

Financial Services E-Commerce Social Platform

Mobile & Gaming Telecom & Travel Insurance

5.3 Million+ User agent strings

3.6 Million+ Email domains 160,000+ Device types

300,000+ OS versions 700,000+ Phone prefixes

Insight from 4.1 Billion+ Users and 800 Billion+ Events

ADDITIONAL BENEFITS OF THE
DATAVISOR UML ENGINE

In additional to its distinctions against other
detection methods, the DataVisor UML Engine has
the following additional advantages:

 � Input data flexibility
Common questions for any machine learning
algorithm are what input data fields are needed
and how much data is required to be effective.
The Data Visor UML Engine is notably more
tolerant of missing data fields and low data
volumes.

 � Low false positives
Unlike anomaly detection and other
unsupervised approaches that generate many
false positives, the DataVisor UML Engine
delivers highly accurate results and can be used
directly through APIs without manual review.
Accuracy rates are uniformly above 90% and
regularly meet or exceed 99%.

 � Low re-tuning overhead
The UML Engine does not require frequent
retunings as its predictive power is not based on
intelligence derived from historical experience. It
is proactive and adaptive to new changing attack
patterns, and can, therefore, maintain long-
term high performance without re-tuning. This
is different from supervised machine learning
models, which decay in effectiveness over time.

 � Transparent detection reasons
Clusters of correlated accounts detected by
the UML Engine have clear indicators of what
attributes and values are shared across them,
and what hidden links are present. As a result,
the UML Engine outputs more transparent and
convincing detection reasons as compared to
other machine learning-based approaches.

Figure 2: DataVisor Global Intelligence Network

6

THE DATAVISOR UML ENGINE IN
ACTION

Here is an example of how the UML Engine
detected a real-world fraud ring that had previously
evaded other detection systems. The fraud ring
in this anonymized example comprises over
200+ credit card accounts from a large banking
institution.

The accounts all resided in low-risk regions, had
high FICO scores, matched bureau data, and were
not in the existing fraud database. In short, they did
not have any risky signals that were similar to any
previously known or seen attacks. As a result, all
of these accounts passed safely through existing
fraud detection systems.

The DataVisor UML Engine not only examined
the above data dimensions but also looked at
other digital attributes of credit card applications
across all accounts. In doing so, the UML Engine
uncovered subtle suspicious correlations that were
indicative of the presence of a fraud ring:

 � All the emails evidenced a shared pattern
of having been created using the account
holder’s first name, last name, initial, and
birthday.

 � The IP addresses were all associated with
high-risk data centers.

 � The accounts all used an older-model
iPhone—iPhone 5 or 5s—with the same OS
version.

 � All of the accounts performed their activity
with Chrome, despite Safari being the default
browser app for iPhones.

In this use case, the UML Engine was able to reveal
that these 200+ accounts belonged to the same
fraud ring, and was able to do so right at the point of
application. The UML Engine assigned the accounts
a score of 0.92 (out of 1.0), indicating a high
likelihood of their being fraudulent.

6 7

A Technical Deep Dive

The DataVisor UML Engine also works in concert
with other DataVisor tools, including the Supervised
Machine Learning Engine, the Global Intelligence
Network (GIN), and the Automated Rules Engine,
which maintains the transparent nature of rules-
based systems but automatically suggests rules to
be created, modified, or deprecated.

As shown in Figure 3, the input to the UML Engine
is raw data in the form of either continuous event
streams (e.g., from a real-time integration setting) or
multiple batch input files that describe user account
profiles or different types of account activities (e.g.,
in a batch integration setting with various event
logs). In a real-time setting, the output is a score,
and reason codes, for each input event. In a batch
setting, the output is a list of detected suspicious
accounts with associated scores and reason codes.
The UML Engine output also feeds into the threat
dashboard, which visualizes attack rings and allows
investigation of each detected incident and account.

Figure 3: The DataVisor UML Solution Architecture

Structured Data

Omni-Channel

Unstructured Data
Global Intelligence Network

Unsupervised Machine
Learning Engine

Supervised Machine
Learning Engine

Call Center Web

Login Event Mobile

delivered via UI or API
(Real-time or Batch)

w/ reason code & campaign group ID

DataVisor ScoreDataVisor SolutionClient Input

92

TECHNOLOGY STACKDEPLOYMENT OPTIONS

On-Premise Private Cloud Saas

8

In between the input and output, there are four major
steps that the UML Engine can perform:

 � Dynamic feature extraction

 � Unsupervised attack ring detection

 � Supervised detection (optional)

 � Result categorization and ranking

These four steps precisely identify fraudulent
and malicious accounts that combine as large
fraud rings. Detecting such a fraud ring is done
by discovering the hidden links among the
corresponding account-based data points. All of the
algorithms are run on top of a distributed big data
infrastructure with algorithmic optimizations that
enable real-time detection.

8 9

Dynamic Feature Extraction

The goal of unsupervised machine learning is to
generate a comprehensive and meaningful set
of features to describe each input account. The
“unsupervised” nature means the system has no
prior knowledge of new attack patterns, nor does
it know in advance which features will be effective.
The UML Engine is accordingly designed to operate
across a very high-dimensional feature space and be
comprehensive in extracting features.

The UML Engine generates the following categories
of features to describe each user account, as shown
in Figure 4.

 � Profile information: Demographic
information associated with an account,
usually provided at the point of application
or registration. Information may include
user account nickname, income range, age,
gender, and address.

 � Behaviors and activities: What the account
has done, and when; for example, payment
events which include a timestamp, payment
amount, and method.

 � Origins and digital fingerprints: Information
describing the access methods of an
account, including its device type and
version, browser information, IP address, and
geographic origins.

 � Contents and metadata: Text and pictures
generated by an account, such as comments,
profile photos, and phone call records.

 � Relationships between accounts:
Interactions and relationships between
different accounts; for example, one account
sending money to other accounts that are
friends or contacts.

#1
STEP

10

Figure 4: The UML Engine Dynamic Feature Extraction. The top line shows some example features that
DataVisor extracts from the raw input data.

Input Data
(unfiltered, Terabyte Scale Capacity)

Social CommerceF inancial

Dynaic Event Extraction

Natural
Language

Processing
Graph
Edges

Image
Metadata
Analysis

Statistical
Analysis

Techniques

Dynamic Feature Extraction

...

Profile
Information

Behaviours &
Activities

Origins &
Digital

Fingerprints
Contents &
Metadata

Relationship
Among

Accounts

Reg time IP
Attributes

Event
Sequesnce

Velocity +
Frequency

Temporal/
Spatial

Domain
Sttributes

Graph
Attributes

...

Domain
Knowledge

DatVisor
GIN Input

10 11

For unstructured text, the UML Engine leverages
Natural Language Processing (NLP) techniques
to derive rich textual and contextual features. For
image input, the UML Engine supports meta-data
attributes such as image title, creation time, location,
generation source, format, and resolution (this
can be expanded to support more sophisticated
features). For relationship information between
accounts, the UML Engine describes them using
graph attributes such as directional and bi-
directional links, degrees of nodes, edge weights,
graph neighborhood features, and community
features.

This process is dynamic in that, for each category,
the UML Engine will derive as many features as
applicable based on the input data schema—
sometimes as high as hundreds of thousands.
In certain cases, literally millions of features are
created. For example, based on input account event
types and sequences, the UML Engine can derive
a variety of features including event frequencies,
velocities, time interval gap distributions, diurnal
patterns, and sub-sequence patterns. When the input
data fields need to change or increase over time, the
number of feature dimensions can automatically
adjust accordingly.

The UML Engine’s dynamic feature extraction differs
from other feature engineering approaches in four
major ways:

 � Unrivaled domain expertise: The features
created from input data are designed based
on decades of experience researching
and fighting real-life fraud, abuse, money
laundering, and more.

 � Enhanced intelligence: The features are
enriched with DataVisor’s Global Intelligence
Network, particularly for digital information.

 � Broad scope: The features describe both
structured and unstructured input data, as
well as a variety of relationships across
accounts, whereas most existing solutions
are based on a fixed set of pre-defined
features from structured input data.

 � Flexibility: The list of features dynamically
expands when input data has more fields in
the schema.

12

Unsupervised Attack Ring
Detection

In this step, the UML Engine performs correlation
analysis across all accounts and identifies attack
rings. An attack ring can be broadly defined as a
collection of malicious accounts that have strong
similarities or correlations in their features, and
which are likely operated by a single individual
or group of attackers. Addition steps within this
process include clustering and graph analysis.

STEP 2.A: CLUSTERING ANALYSIS
Based on the input feature vectors, the UML Engine
first identifies suspicious clusters of accounts that
have strong similarities or correlations in the high-
dimensional feature space. The keys to this step
are reducing feature dimensions and determining
the distance function that computes the distance
between data points. When the distance function
is properly designed with a subset of important
features, only truly suspicious accounts will form
tight clusters while legitimate accounts will not
group.

Other methodologies create clusters of accounts
and then rely on anomaly detection approaches to
separate groups. These approaches can generate
very noisy results and typically require another layer
of human intervention. In contrast, DataVisor’s
clustering approach is much more accurate at
finding true attack rings.

#2
STEP

12 13

The selection of features and distance functions are
guided in the following manner:

 � Important features are assigned higher
weights; their weighted importance is based
on the industry sector, and targeted attacks.
Here we leverage rich domain experience to
guide defining important feature categories
for different setups. For example, knowing
that an account’s address is valid and that
their information matches credit bureau data
is important when detecting bank account
application fraud. On the other hand, this
information is less important when detecting
spam attacks in social networks, where
legitimate users often provide an empty or
vague address when signing up.

 � The DataVisor Global Intelligence Network
(GIN) can optionally augment the UML Engine
with initial detection results based on digital
fingerprint signals. The initial results provided
by GIN are typically noisy but provide insights
that guide the selection of important feature
dimensions and their weights. In other
words, signals from GIN do not lead to final
clustering results but enhance the confidence
of feature selection. For example, sharing IP
addresses from a hotel location is not very
suspicious, while sharing proxy IP addresses
is a lot more suspicious.

 � The UML Engine performs a variety of
statistical analyses of various feature
distributions from the raw input data. These
feature distributions also serve as input to
help auto-infer the most important feature

dimensions.

With the important feature dimensions and distance
functions selected, the UML Engine can then group
all data points to generate clusters. The clustering
process is iterative and non-exclusive. The engine
iteratively clusters data points based on different
combinations of selected features, weights, and
distance functions. As a result, each account can
belong to different clusters, where each cluster is
created by a different set of criteria. For example, an
account can belong to a cluster with address and
location features being more important dimensions,
and simultaneously belong to another cluster with
event sequences and behavior patterns being more
dominant features.

The detection does not always depend on the
existence of important features. A strong correlation
of multiple accounts across a large number of
seemingly unimportant features is also an indication
of suspiciousness, and the UML Engine considers
this case as well. For example, a group of accounts
that follows almost the same behavior pattern (e.g.,
when they log in, when they log out, when they
update account information) is still very suspicious,
even when, traditionally, these behaviors may not be
considered very important features for transaction
fraud.

14

During each iteration, the selected features,
their weights, and the distance functions, are all
automatically adjusted until they meet all of the
following criteria:

 � The ratio of intra-cluster distance to inter-
cluster distance is small enough based
on a threshold. The threshold can be pre-
defined and can be adjusted according to
the tradeoffs between coverage and false
positives.

 � The clustering results stabilize and converge.

 � The output clusters capture at least a certain
percentage of the Global

 � Intelligence Network classification results.
(Optional, as this can be a noisy measure.)

Given the high dimensionality of the data and the
highly iterative process, the challenge is to bound the
computation complexity so that the clusters can be
computed and converge quickly, even in a real-time
setting. The DataVisor UML Engine’s efficient and
scalable proprietary algorithms represent a major
breakthrough for selecting features and computing
distance functions with the following distinguishing
characteristics:

 � This approach is much more efficient
than common methods of dimensionality
reduction, such as Principal Component
Analysis (PCA), and does not assume that the
input data follows a linear relationship.

 � The resulting clusters are highly accurate in
pinpointing the exact fraud type, thanks to
built-in domain knowledge and proprietary
algorithms that automatically optimize
clustering results towards different use

cases.

Figure 5: The UML Engine Clustering Analysis

Domain
Knowledge

Features
Vectors

Extracted
Events

DataVisor
GIN Input

Correlation Analysis

Reducing Feature
Dimensions

Determining
Distance Function

Clustering Clustering
Results

Selected Features,
Weights, and

Distance Functions

Cluster Results and Statistics

(catch ratio of GIN classification, inter and
infra cluster distances, cluster convergence)

14 15

STEP 2.B: GRAPH ANALYSIS
Clustering results produce suspicious groups of
accounts that are highly similar or correlated on
either important features or over a large number
of feature dimensions. The UML Engine further
consolidates these results using graph analysis to
link clusters that share similar accounts or strong
features. As a graph problem, the clusters are
nodes, and edges link these similar clusters. The
edge weight between two clusters is a function of
the number of shared accounts, the shared feature
dimensions, and the cluster sizes.

This process examines a different aspect of
connectivity between accounts. It discovers not
just direct correlations but also indirect, transitive
similarities and correlations across accounts (e.g.,
this process can group accounts A and C together if
A is similar to B and B is similar to C). After the graph
analysis, a “weak” cluster may be linked together
with several “strong” clusters to raise the confidence
of detection of this weak cluster. This process
enhances the detection coverage and increases
detection accuracy.

Tightly connected sub-graph components usually
indicate the existence of attack rings.

16

This is an optional step where the output from the
unsupervised attack ring detection can serve as
training data to automatically train a supervised
learning model and detect additional individual
malicious accounts that share similar patterns with
the already captured ones.

Compared to common supervised approaches, the
DataVisor Supervised Learning Detection involves two
different design decisions:

 � It is optimized for fast and constant retraining
without manual tuning so that the outputs
from the unsupervised model can help adjust
the model quickly.

 � It is optimized for high accuracy and low false
positive rates so that the output results can
directly be applied to client production use.

This step outputs a set of detected individual
bad accounts, which will then be combined with
the detected attack rings to maximize detection
coverage, according to coverage and false positive
requirements.

Supervised Learning Detection
(Optional)#3

STEP

16 17

The final step is to rank detected accounts, assign
them confidence scores, and categorize attack rings
by the nature of their attacks.

All accounts are assigned a score from 0.0 to 1.0, with
0.0 being not suspicious at all and 1.0 being most
suspicious. The scores help guide the policy setting
for client actions, such as auto-blocking accounts
that are 0.8 and above and manually reviewing
the remaining ones above 0.0 (or another chosen
threshold). Result ranking and score assignment uses
a function based on the associated attack ring size
and the corresponding cluster distances. Intuitively,
the smaller the cluster distance is, and the larger the
ring size is, the higher the score is.

Categorization is the last step in this process. This
includes adding reason codes to each cluster, that
highlight the important characteristics of the attack
ring. To categorize attack rings, the UML Engine
classifies them by many attributes including event
types, attack techniques, bot versus human patterns,
and account ages. The following shows some
example categorizations:

 � Automated account opening fraud

 � Mass account takeover password testing ring

 � Successful account takeover spam ring

 � Manual transaction fraud

 � Structured transfers indicative of money
laundering

 � Rapid transfer of funds indicative of money
laundering

This categorization helps users to determine
appropriate actions. For example, for account
takeover fraud rings, a client may not wish to directly
shut down the accounts, opting instead to contact
the owners to help them recover their accounts.

Result Categorization and
Ranking#4

STEP

18

Architecture and Achieving
Real-Time Detection

The entire DataVisor UML Engine—from
computation to data access and storage—is built
on a hyper-modern big data infrastructure. Apache
Spark, HDFS, Hadoop, Apache HBase, and Casandra,
Kafka are all being used to support the system in
different capacities.

Figure 7 shows the system diagram. The left side of
the figure is a batch UML engine implemented on top
of Apache Spark. If real-time processing is required,
the UML engine additionally includes a real-time
component shown on the right side of the figure.

Figure 6: The UML Engine Big Data Infrastructure Stack

Figure 7: The UML Engine Architecture

Apache Spark

Batch UML Engine

Dynamic
Feature

Extraction

(of billions of
 users)

Unsupervised Attack
Ring Detection

Distributed Storage
(e.g., AWS S3, HDFS)

Clusting analysis
Graph processing

Supervised Machine
Learning Engine

Result
Categorization

and Ranking

Self-Generated Training Data
Malicious
Accounts

Malicious
Attack
Rings Distributed, in-memory System

Real-time Correlation Analysis

TECHNOLOGY STACK

18 19

The real-time component is implemented as a
distributed, in-memory system with the same
algorithmic logic as the batch system. As events
come in, the real-time component keeps historical
account states and continuously updates and
evaluates them. The clustering and graph analysis
is triggered—on demand, by an incoming event—to
search and analyze a subset of related accounts and
events. Due to memory and latency constraints, the
system will perform a parallel search of the most
relevant clusters and sub-graph components. This
search expands when more space and time become
available. The batch system periodically calibrates
the real-time component for computational drifts
caused by memory and latency constraints, so that
the real-time results are close to the fidelity of a
batch system.

Both the batch system and the real-time component
are built using the same algorithms, but they are
designed with different optimization goals. The
batch system targets maximal coverage and
accuracy, while the real-time system also needs to
meet latency and throughput requirements. The
performance of the real-time system with respect to
the batch system is easily forecasted by latency and
throughput requirements versus machine capacity.
The real-time system is built to be horizontally
scalable that requirements can be easily met with
additional machine resources.

20

Concluding Thoughts

Unsupervised machine learning technologies enable
an entirely new way of combating even the most
complex and sophisticated modern fraudsters.
These technologies power more proactive and
adaptive approaches for catching new and
continually evolving attacks.

The key challenges are handling the vast volume of
data in the new digital era, and being able to analyze
all accounts and events at once to discover patterns
rapidly and accurately.

The DataVisor UML Engine was the first of its kind
in the field, and as the backbone of all DataVisor
offerings today, it remains the leading unsupervised
machine learning solution for addressing the
challenges of modern digital fraud. To date,
DataVisor protects more than 4.2 billion accounts

7

20

About DataVisor
DataVisor is the leading fraud detection platform powered by
transformational AI technology. Using proprietary unsupervised
machine learning algorithms, DataVisor restores trust in digital
commerce by enabling organizations to proactively detect and act
on fast-evolving fraud patterns, and prevent future attacks before
they happen. Combining advanced analytics and an intelligence
network of more than 4B global user accounts, DataVisor protects
against financial and reputational damage across a variety of
industries, including financial services, marketplaces, ecommerce,
and social platforms.

For more information on DataVisor:

info@datavisor.com

www.datavisor.com

967 N. Shoreline Blvd. | Mountain View | CA 94043

