
10-Step Methodology to Creating a
Single View of your Business
November 2017

A MongoDB White Paper



Table of Contents
1Introduction

1Why Single View?

210 Step Methodology to Delivering a Single View
2Step 1: Define Project Scope & Sponsorship
3Step 2: Identify Data Consumers
3Step 3: Identify Data Producers
3Step 4: Appoint Data Stewards
4Step 5: Develop the Single View Data Model
4Step 6: Data Loading & Standardization
6Step 7: Match, Merge, and Reconcile
6Step 8: Architecture Design
7Step 9: Modify the Consuming Systems
7Step 10: Implement Maintenance Processes

8Single View Maturity Model

9Required Database Capabilities for Single View

11Single View in Action

12Conclusion

12We Can Help



Introduction

“Single View”. “360-Degree View”. “Data Hub”. A subset of

“Master Data Management”. Call it what you will – and for

the purposes of this paper, we will be calling it “single view”

– organizations have long seen the value in aggregating

data from multiple systems and channels into a single,

holistic, real-time representation of a business entity or

domain. That entity is often a customer. But the benefits of

a single view in enhancing business visibility and

operational intelligence go far beyond understanding

customers. A single view can apply equally to other

business contexts, such as products, supply chains,

industrial machinery, cities, financial asset classes, and

many more.

However, for many organizations, successfully delivering a

single view has been elusive. Technology has certainly

been a limitation – for example, the rigid, tabular data

model imposed by traditional relational databases inhibits

the schema flexibility necessary to accommodate the

diverse data sets contained in source systems. But

limitations extend beyond just the technology to include the

business processes needed to deliver and maintain a

single view.

MongoDB has been used in many single view projects

across enterprises of all sizes and industries. This white

paper shares the best practices we have observed and

institutionalized over the years. It provides a step-by-step

guide to the methodology, governance, and tools essential

to successfully delivering a single view project with

MongoDB.

Why Single View?

Today’s modern enterprise is data-driven. How quickly an

organization can access and act upon information is a key

competitive advantage. So how does a single view of data

help? Most organizations have a complicated process for

managing their data. It usually involves multiple data

sources of variable structure, ingestion and transformation,

loading into an operational database, and supporting the

business applications that need the data. Often there are

also analytics, BI, and reporting that require access to the

data, potentially from a separate data warehouse or data

lake. Additionally, all of these layers need to comply with

1



security protocols, information governance standards, and

other operational requirements.

Inevitably, information ends up stranded in silos. Often

systems are built to handle the requirements of the

moment, rather than carefully designed to integrate into

the existing application estate, or a particular service

requires additional attributes to support new functionality.

Additionally, new data sources are accumulated due to

business mergers and acquisitions. All of a sudden

information on a business entity, such as a customer, is in a

dozen different and disconnected places.

FigurFigure 1:e 1: Sample of single view use cases

Single view is relevant to any industry and domain as it

addresses the generic problem of managing disconnected

and duplicate data. Specifically, a single view solution does

the following:

• Gathers and organizes data from multiple, disconnected

sources;

• Aggregates information into a standardized format and

joint information model;

• Provides holistic views for connected applications or

services, across any digital channel;

• Serves as a foundation for analytics – for example,

customer cross-sell, upsell, and churn risk.

FigurFigure 2:e 2: High-level architecture of single view platform

10 Step Methodology to
Delivering a Single View

From scoping to development to operationalization, a

successful single view project is founded on a structured

approach to solution delivery. In this section of the

whitepaper, we identify a repeatable, 10-step methodology

and tool chain that can move an enterprise from its current

state of siloed data into a real-time single view that

improves business visibility. Figure 3 shows the

methodology.

The timescale for each step shown in Figure 3 is highly

project-dependent, governed by such factors as:

• The number of data sources to merge;

• The number of consuming systems to modify;

• The complexity of access patterns querying the single

view.

MongoDB’s consulting engineers can assist in estimating

project timescales based on the factors above.

Step 1: Define Project Scope &
Sponsorship

Building a single view can involve a multitude of different

systems, stakeholders, and, business goals. For example,

creating a single customer view potentially entails

extracting data from numerous front and back office

applications, operational processes, and partner systems.

From here, it is aggregated to serve everyone from sales

and marketing, to call centers and technical support, to

finance, product development, and more. While it’s perfectly

reasonable to define a future-state vision for all customer

2



FigurFigure 3:e 3: 10-step methodology to deliver a single view

data to be presented in a single view, it is rarely practical in

the first phase of the project.

Instead, the project scope should initially focus on

addressing a specific business requirement, measured

against clearly defined success metrics. For example,

phase 1 of the customer single view might be

concentrated on reducing call center time-to-resolution by

consolidating the last three months of customer

interactions across the organization’s web, mobile, and

social channels. By limiting the initial scope of the single

view project, precise system boundaries and business

goals can be defined, and department stakeholders

identified.

With the scope defined, project sponsors can be appointed.

It is important that both the business and technical sides of

the organization are represented, and that the appointees

have the authority to allocate both resources and credibility

to the project. Returning to our customer single view

example above, the head of Customer Services should

represent the business, partnered with the head of

Customer Support Systems.

Step 2: Identify Data Consumers

This is the first in a series of iterative steps that will

ultimately define the single view data model. In this stage,

the future consumers of the single view need to share:

• How their current business processes operate,

including the types of queries they execute as part of

their day-to-day responsibilities, and the required

Service Level Agreements (SLAs);

• The specific data (i.e., the attributes) they need to

access;

• The sources from which the required data is currently

extracted.

Step 3: Identify Data Producers

Using the outputs from Step 2, the project team needs to

identify the applications that generate the source data,

along with the business and technical owners of the

applications, and their associated databases. It is important

to understand whether the source application is serving

operational or analytical applications. This information will

be used later in the project design to guide selection of the

appropriate data extract and load strategies.

Step 4: Appoint Data Stewards

A data steward is appointed for each data source identified

in the previous step. The steward needs to command a

deep understanding of the source database, with specific

knowledge of:

• The schema that stores the source data, and an

understanding of which tables store the required

attributes, and in what format;

• The clients and applications that generate the source

data;

3



• The clients and applications that consume the source

data.

The data steward should also be able to define how the

required data can be extracted from the source database

to meet the single view requirements (e.g., frequency of

data transfer), without impacting either the current

producing or consuming applications.

Step 5: Develop the Single View Data
Model

With an understanding of both what data is needed, and

how it will be queried by the consuming applications, the

development team can begin the process of designing the

single view schema.

Identify Common Attributes

An important consideration at this stage is to define the

common attributes that must appear in every record. Using

our customer single view as an example, every customer

document should contain a unique customer identifier such

as a customer number or email address. This is the field

that the consuming applications will use by default to query

the single view, and would be indexed as the record’s

primary key. Analyzing common query access patterns will

also identify the secondary indexes that need to be created

for each record. For example, we may regularly query

customers against location and products or services they

have purchased. Creating secondary indexes on these

attributes is necessary to ensure such queries are

efficiently serviced.

There may also be many fields that vary from record to

record. For example, some customers may have multiple

telephone numbers for home, office, and cell phones, while

others have only a cell number. Some customers may have

social media accounts against which we can track interests

and measure sentiment, while other customers have no

social presence. MongoDB’s flexible document model with

dynamic schema is a huge advantage as we develop our

single view. Each record can vary in structure, and so we

can avoid the need to define every possible field in the

initial schema design, while using schema validation to

enforce specific rules on mandatory fields.

Define Canonical Field Formats

The developers also need to define the canonical format of

field names and data attributes. For example, a customer

phone number may be stored as a string data type in one

source system, and an integer in another, so the

development team needs to define what standardized

format will be used for the single view schema. We can use

approaches such as MongoDB’s native schema validation

to create and enforce rules governing the presence of

mandatory fields, ranges of permissible values, and data

types.

Define MongoDB Schema

With a data model that allows embedding of rich data

structures, such as arrays and sub-documents, within a

single localized document, all required data for a business

entity can be accessed in a single call to MongoDB. This

design results in dramatically improved query latency and

throughput when compared to having to JOIN records

from multiple relational database tables.

Data modeling is an extensive topic with design decisions

ultimately affecting query performance, access patterns,

ACID guarantees, data growth, and lifecycle management.

The MongoDB data model design documentation provides

a good introduction to the factors that need to be

considered. In addition, the MongoDB Development Rapid

Start service offers custom consulting and training to assist

customers in schema design for their specific projects.

Step 6: Data Loading & Standardization

With our data model defined, we are ready to start loading

source data into our single view system. Note that the load

step is only concerned with capturing the required data,

and transforming it into a standardized record format. In

Step 7 that follows, we will create the single view data set

by merging multiple source records from the load step.

There will be two distinct phases of the data load:

1. Initial load. Typically a one-time operation that extracts

all required attributes from the source databases,

loading them into the single view system for subsequent

merging;

4

https://docs.mongodb.com/manual/core/data-model-design/
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting


2. Delta load. An ongoing operation that propagates

updates committed to the source databases into the

single view.

To maintain synchronization between the source and single

view systems, it is important that the delta load starts

immediately following the initial load.

For all phases of the data load, developers should ensure

they capture data in full fidelity, so as not to lose data

types. If files are being emitted, then write them out in a

JSON format, as this will simplify data interchange

between different databases. If possible, use MongoDB

Extended JSON as this allows temporal and binary data

formats to be preserved.

Initial Load

Several approaches can be used to execute the initial load.

An off-the-shelf ETL (Extract, Transform & Load) tool can

be used to migrate the required data from the source

systems, mapping the attributes and transforming data

types into the single view target schema. Alternatively,

custom data loaders can be developed, typically used when

complex merging between multiple records is required.

MongoDB consulting engineers can advise on which

approach and tools are most suitable in your context. If

after the initial load the development team discovers that

additional refinements are needed to the transformation

logic, then the single view data should be erased, and the

initial load should be repeated.

Delta Load

The appropriate tool for delta loads will be governed by the

frequency required for propagating updates from source

systems into the single view. In some cases, batch loads

taken at regular intervals, for example every 24 hours, may

suffice. In this scenario, the ETL or custom loaders used

for the initial load would generally be suitable. If data

volumes are low, then it may be practical to reload the

entire data set from the source system. A more common

approach is to reload data only from those customers

where a timestamp recorded in the source system

indicates a change. More sophisticated approaches track

individual attributes and reload only those changed values,

even keeping track of the last-modification time in the

single-view schema.

If the single view needs to be maintained in near real time

with the source databases, then a message queue would

be more appropriate. An increasingly common design

pattern we have observed is using Apache Kafka to stream

updates into the single view schema as they are committed

to the source system. Download our Data Streaming with

Kafka and MongoDB white paper to learn more about this

approach.

Note that in this initial phase of the single view project, we

are concerned with moving data from source systems to

the single view. Updates to source data will continue to be

committed directly to the source systems, and propagated

from there to the single view. We have seen customers in

more mature phases of single view projects write to the

single view, and then propagate updates back to the

source systems, which serve as systems of record. This

process is beyond the scope of this initial phase.

Standardization

In a perfect world, an entity’s data would be consistently

represented across multiple systems. In the real world,

however, this is rarely the case. Instead, the same attributes

are often captured differently in each system, described by

different field names and stored as different data types. To

better understand the challenges, take the example below.

We are attempting to build a single view of our frequent

travelers, with data currently strewn across our hotel, flight,

and car reservation systems. Each system uses different

field names and data types to represent the same

customer information.

FigurFigure 4:e 4: The name’s Bond….oh hang on, it might be Bind

5

https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://www.mongodb.com/collateral/data-streaming-with-apache-kafka-and-mongodb
https://www.mongodb.com/collateral/data-streaming-with-apache-kafka-and-mongodb


During the load phase, we need to transform the data into

the standardized formats defined during the design of the

single view data model. This standardized format makes it

much simpler to query, compare, and sort our data.

Step 7: Match, Merge, and Reconcile

Even after standardizing divergent field names and data

types during the data load, inconsistencies can often exist

in the data itself. Accurately merging disparate records is

one the toughest challenges in building a single view. The

good news is that MongoDB has developed tools that can

assist in this process.

Looking again at our frequent traveler example above, we

can see that the customer names are slightly different.

These variances in the first and last names would result in

storing three separate customer records, rather than

aggregating the data into our desired single view.

It is not practical, or necessary, to compare each customer

record to every other customer record loaded from the

source systems. Instead, we can use a grouping function to

cluster records with similar matching attributes. This should

be executed as an iterative process:

1. Start by matching records against unique, authoritative

attributes, for example by email address or credit card

number;

2. Group remaining records by matching combinations of

attributes – for example a lastname, dateofbirth, and

zipcode triple;

3. Finally, we can apply fuzzy matching algorithms such as

Levenshtein distance, cosine similarity, and locality

sensitive hashing to catch data errors in attributes such

as names.

Using the process above, a confidence factor can be

applied to each match. For those matches where

confidence is high, i.e. 95%+, the records can be

automatically merged and written to the authoritative single

view. Note that the actual confidence factor can vary by

use case, and is often dependent on data quality contained

in the source systems. For matches below the desired

threshold, the merged record with its conflicting attributes

can be written to a pending single view record for manual

intervention. Inspecting the record to resolve conflicts

might be performed by the data steward, or by the

application user when they access the record.

FigurFigure 5:e 5: Using MongoDB tools to move from disparate
source data to merged and reconciled single view data

sets

To assist customers, MongoDB consulting engineers have

developed tools to facilitate the process above:

• A Workers framework that parallelizes

document-to-document comparisons. The framework

allows long running jobs to be partitioned and run over

collections of records, maintaining progress of grouping

and matching.

• A Grouping tool allows records to be clustered based

on attribute similarity, using algorithms such as

Levenshtein to calculate the distance between different

documents, and then single-linkage clustering to create

precise matches for merging.

By combining the Workers framework and Grouping tool,

merged master data sets are generated, allowing the

project team to begin testing the resulting single view.

Step 8: Architecture Design

While the single view may initially address a subset of

users, well-implemented solutions will quickly gain traction

across the enterprise. The project team therefore needs to

have a well-designed plan for scaling the service and

delivering continuous uptime with robust security controls.

MongoDB’s Production Readiness consulting engagement

will help you achieve just that. Our consulting engineer will

collaborate with your devops team to configure MongoDB

to satisfy your application’s availability, performance, and

6

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://www.mongodb.com/products/consulting


FigurFigure 6:e 6: Efficient matching and merging pipeline

security needs, delivering a deployment architecture that

will address:

• Where you should place your replica set members for

high availability, disaster recovery, and other failover

requirements;

• What hardware you should provision to meet

performance goals;

• How to enable sharding to scale your single view

database as workloads increase;

• How to secure your MongoDB deployment according to

your corporate compliance requirements;

• How to continue to meet performance and availability

goals as the single view usage evolves and expands.

The MongoDB consulting engineer can then implement

these recommendations for you, or your team can handle

the required configuration.

Step 9: Modify the Consuming Systems

With the merged data set created and systems provisioned,

we can begin modifying the applications that will consume

the single view.

The first step will be to create an API that exposes the

single view. This will typically be a RESTful web service that

abstracts access to the underlying data set. Any number of

consuming applications – whether customer-facing web

and mobile services, or backend enterprise and analytics

applications – can be repointed to the web service, with no

or minimal modification the application’s underlying logic.

Note that write operations will continue to be committed

directly to the source systems.

It is generally a best practice to modify one consuming

application at a time, thus phasing the development team’s

effort to ensure correct operation, while minimizing

business risk.

Step 10: Implement Maintenance
Processes

No organization is static. Digital transformation initiatives

supported by agile development methodologies are

enabling enterprises to innovate faster – whether through

launching new services or evolving existing applications.

Our single view data model needs to maintain pace with

business change. This change can manifest itself in adding

new attributes from existing source systems, onboarding

entirely new data sources, or creating new application uses

for the single view.

The project team needs to institutionalize governance

around these maintenance processes, defining a strategy

on how application changes that generate new attributes

of value are integrated into the single view schema. The

steps defined above – scoping the required changes,

identifying the data producers and stewards, updating the

schema, and determining the load and merge strategies –

are all essential to maintaining the single view. In some

7



FigurFigure 7:e 7: Single view maturity model

more mature single view projects, the application team may

decide to write new attributes directly to the single view,

thus avoiding the need to update the legacy relational

schemas of source systems. This is discussed in more

detail in the Maturity Model section of the whitepaper.

As we consider the maintenance process, the benefits of a

flexible schema – such as that offered by MongoDB’s

document data model – cannot be underestimated. As we

will see in the Case Studies section later, the rigidity of a

traditional relational data model has prevented the single

view schema from evolving as source systems are updated.

This inflexibility has scuppered many single view projects in

the past.

Single View Maturity Model

As discussed above, most single view projects start by

offering a read-only view of data aggregated from the

source systems. But as projects mature, we have seen

customers start to write to the single view. Initially they may

start writing simultaneously to the source systems and

single view to prove efficacy – before then writing to the

single view first, and propagating updates back to the

source systems.. The evolution path of single view maturity

is shown below.

What are the advantages of writing directly to the single

view?

• Real-time view of the data. Users are consuming the

freshest version of the data, rather than waiting for

updates to propagate from the source systems to the

single view.

• Reduced application complexity. Read and write

operations no longer need to be segregated between

different systems. Of course, it is necessary to then

implement a change data capture process that pushes

writes against the single view back to the source

databases. However, in a well designed system, the

mechanism need only be implemented once for all

applications, rather than read/write segregation

duplicated across the application estate.

• Enhanced application agility. With traditional relational

databases running the source systems, it can take

weeks or months worth of developer and DBA effort to

update schemas to support new application

functionality. MongoDB’s flexible data model with a

dynamic schema makes the addition of new fields a

runtime operation, allowing the organization to evolve

applications more rapidly.

Figure 8 shows an architectural approach to synchronizing

writes against the single view back to the source systems.

MongoDB change streams enable developers to build

reactive, real-time apps that can view, filter, and act on data

changes as they occur in the single view database. Change

streams enable seamless data movement across

distributed database and application estates, making it

simple to stream data changes back to the source systems,

using a fully reactive programming style. They can do this

8



without constantly querying the entire single view to

identify changes. Applications can consume change

streams directly, or via a message queue. Again, MongoDB

consulting engineers can assist in defining the most

appropriate architecture.

FigurFigure 8:e 8: Writing to the single view

Required Database Capabilities
to Support the Single View

The database used to store and manage the single view

provides the core technology foundation for the project.

Selection of the right database to power the single view is

critical to determining success or failure.

Relational databases, once the default choice for

enterprise applications, are unsuitable for single view use

cases. The database is forced to simultaneously

accommodate the schema complexity of all source

systems, requiring significant upfront schema design effort.

Any subsequent changes in any of the source systems’

schema – for example, when adding new application

functionality – will break the single view schema. The

schema must be updated, often causing application

downtime. Adding new data sources multiplies the

complexity of adapting the relational schema.

Relational databases also struggle to meet the

performance SLAs of the system. Typically the single view

data set will be normalized across multiple tables, which

must then be JOINed to materialize the single view. This

process can add significant query latency, while also

inhibiting scalability as the single view scales to onboard

new data sources and serve new applications.

MongoDB provides a mature, proven alternative to the

relational database for enterprise applications, including

single view projects. MongoDB is the most popular and

widely used non-relational database available today. With

its unique Nexus Architecture, MongoDB is at the center of

digital transformation initiatives across a range of

organizations including ADP, Air France, AstraZeneca,

Barclays, Bosch, Cisco, Forbes, KPMG, Lockheed Martin,

MetLife, the UK Government’s Digital Service, UPS,

Verizon, and many more. MongoDB is the only database

that harnesses the innovations of NoSQL – data model

flexibility, always-on global deployments, and scalability –

while maintaining the foundation of rich query capabilities

and management integrations that have made relational

databases an essential technology for enterprise

applications over the past three decades.

As discussed below, the required capabilities demanded by

a single view project are well served by MongoDB:

Flexible Data Model

MongoDB's document data model makes it easy for

developers to store and combine data of any structure

within the database, without giving up sophisticated

validation rules to govern data quality. The schema can be

dynamically modified without application or database

downtime. If, for example, we want to start to store

geospatial data associated with a specific customer event,

the application simply writes the updated object to the

database, without costly schema modifications or redesign.

MongoDB documents are typically modeled to localize all

data for a given entity – such as a financial asset class or

user – into a single document, rather than spreading it

across multiple relational tables. Document access can be

completed in a single MongoDB operation, rather than

having to JOIN separate tables spread across the

database. As a result of this data localization, application

performance is often much higher when using MongoDB,

which can be the decisive factor in improving customer

experience.

Intelligent Insights, Delivered in Real Time

With all relevant data for our business entity consolidated

into a single view, it is possible to run sophisticated

analytics against it. For example, we can start to analyze

customer behavior to better identify cross-sell and upsell

opportunities, or risk of churn or fraud. Analytics and

9

https://www.mongodb.com/who-uses-mongodb
https://www.mongodb.com/who-uses-mongodb


machine learning must be able to run across vast swathes

of data stored in the single view. Traditional data

warehouse technologies are unable to economically store

and process these data volumes at scale. Hadoop-based

platforms are unable to serve the models generated from

this analysis, or perform ad-hoc investigative queries with

the low latency demanded by real-time operational

systems.

The MongoDB query language and rich secondary indexes

enable developers to build applications that can query and

analyze the data in multiple ways. Data can be accessed by

single keys, ranges, text search, graph, and geospatial

queries through to complex aggregations and MapReduce

jobs, returning responses in milliseconds. Data can be

dynamically enriched with elements such as user identity,

location, and last access time to add context to events,

providing behavioral insights and actionable customer

intelligence. Complex queries are executed natively in the

database without having to use additional analytics

frameworks or tools, and avoiding the latency that comes

from ETL processes that are necessary to move data

between operational and analytical systems in legacy

enterprise architectures.

FigurFigure 9:e 9: Single view platform serving operational and
analytical workloads

MongoDB replica sets can be provisioned with dedicated

analytics nodes. This allows data scientists and business

analysts to simultaneously run exploratory queries and

generate reports and machine learning models against live

data, without impacting nodes serving the single view to

operational applications, again avoiding lengthy ETL cycles.

Predictable Scalability with Always-on
Availability

Successful single view projects tend to become very

popular, very quickly. As new data sources and attributes,

along with additional consumers such as applications,

channels, and users are onboarded, so demands for

processing and storage capacity quickly grow.

FigurFigure 1e 10:0: MongoDB scale-out as the single view grows

To address these demands, MongoDB provides horizontal

scale-out for the single view database on low cost,

commodity hardware using a technique called sharding,

which is transparent to applications. Sharding distributes

data across multiple database instances. Sharding allows

MongoDB deployments to address the hardware

limitations of a single server, such as bottlenecks in CPU,

RAM, or storage I/O, without adding complexity to the

application. MongoDB automatically balances single view

data in the cluster as the data set grows or the size of the

cluster increases or decreases.

MongoDB maintains multiple replicas of the data to

maintain database availability. Replica failures are

self-healing, and so single view applications remain

unaffected by underlying system outages or planned

maintenance. Replicas can be distributed across regions

for disaster recovery and data locality to support global

user bases.

FigurFigure 1e 11:1: Global distribution of the single view

10



Enterprise Deployment Model

MongoDB can be run on a variety of platforms – from

commodity x86 and ARM-based servers, through to IBM

Power and zSeries systems. You can deploy MongoDB

onto servers running in your own data center, or public and

hybrid clouds. With the MongoDB Atlas service, we can

even run the database for you.

MongoDB Enterprise Advanced is the production-certified,

secure, and supported version of MongoDB, offering:

• Advanced SecurityAdvanced Security. Robust access controls via LDAP,

Active Directory, Kerberos, x.509 PKI certificates, and

role-based access control to ensure a separation of

privileges across applications and users. Data

anonymization can be enforced by read-only views to

protect sensitive, personally identifiable information.

Data in flight and at rest can be encrypted to FIPS

140-2 standards, and an auditing framework for

forensic analysis is provided.

• Automated Deployment and UpgradesAutomated Deployment and Upgrades. With Ops

Manager, operations teams can deploy and upgrade

distributed MongoDB clusters in seconds, using a

powerful GUI or programmatic API.

• PPoint-in-time Recoveryoint-in-time Recovery. Continuous backup and

consistent snapshots of distributed clusters allow

seamless data recovery in the event of system failures

or application errors.

Single View in Action

MongoDB has been used in many single view projects. The

following case studies highlight several examples.

MetLife: From Stalled to Success in 3
Months

In 2011, MetLife’s new executive team knew they had to

transform how the insurance giant catered to customers.

The business wanted to harness data to create a

360-degree view of its customers so it could know and

talk to each of its more than 100 million clients as

individuals. But the Fortune 50 company had already spent

many years trying unsuccessfully to develop this kind of

centralized system using relational databases.

Which is why the 150-year old insurer turned to MongoDB.

Using MongoDB’s technology over just 2 weeks, MetLife

created a working prototype of a new system that pulled

together every single relevant piece of customer

information about each client. Three months later, the

finished version of this new system, called the 'MetLife

Wall,' was in production across MetLife’s call centers.

The Wall collects vast amounts of structured and

unstructured information from MetLife’s more than 70

different administrative systems. After many years of trying,

MetLife solved one of the biggest data challenges dogging

companies today. All by using MongoDB’s innovative

approach for organizing massive amounts of data. You can

learn more from the case study.

CERN: Delivering a Single View of Data
from the LHC to Accelerate Scientific
Research and Discovery

The European Organisation for Nuclear Research, known

as CERN, plays a leading role in the fundamental studies

of physics. It has been instrumental in many key global

innovations and breakthroughs, and today operates the

world's largest particle physics laboratory. The Large

Hadron Collider (LHC) nestled under the mountains on the

Swiss - Franco border is central to its research into origins

of the universe.

Using MongoDB, CERN built a multi-data center Data

Aggregation System accessed by over 3,000 physicists

from nearly 200 research institutions across the globe.

MongoDB provides the ability for researchers to search

and aggregate information distributed across all of the

backend data services, and bring that data into a single

view.

MongoDB was selected for the project based on its flexible

schema, providing the ability to ingest and store data of any

structure. In addition, its rich query language and extensive

secondary indexes gives users fast and flexible access to

data by any query pattern. This can range from simple

key-value look-ups, through to complex search, traversals

and aggregations across rich data structures, including

embedded sub-documents and arrays.

11

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/customers/metlife


You can learn more from the case study.

Global Airline: Enabling Customer
Intimacy

“Big data” is at the core of the airline’s digital

transformation journey, touching many areas of the

business – from aircraft maintenance, to cargo and

operations, to corporate HR and finance functions. It is in

the domain of customer experience that the airline has

prioritized its initial investments.

The company wanted to optimize the customer journey

across web, mobile, call center, and partner channels.

However, with customer data spread across many different

source systems, it was impossible to unify and personalize

the customer experience.

To address these challenges, the airline has built a single

customer view platform on MongoDB. Data is ingested

from data sources using Apache Kafka and then

processed with Apache Spark, before then being written to

the single view stored in MongoDB. The single view serves

real-time customer interactions from multiple channels,

enabling a consistent, personalized experienced, achieving

heightened levels of customer service and loyalty.

Single View Reference Architecture

Working with the customers above, and hundreds of

others, MongoDB has developed a reference architecture

and best practice guidelines for implementing a scalable,

efficient, secure and low risk single view platform. It

outlines how MongoDB drives a single view, and discusses

common components, architecture patterns and key

considerations required to build the single view. The

Reference Architecture is relevant to enterprise architects

and engineers who are responsible for crafting solutions

that gather data from various, disparate sources to create a

single view of an entity. Contact us to learn more.

Conclusion

Bringing together disparate data into a single view is a

challenging undertaking. However, by partnering with a

vendor that combines proven methodologies, tools, and

technologies, organizations can innovate faster, with lower

risk and cost. MongoDB is that vendor.

We Can Help

We are the MongoDB experts. Over 4,300 organizations

rely on our commercial products, including startups and

more than half of the Fortune 100. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a backend as a service (BaaS), giving

developers full access to MongoDB, declarative read/write

controls, and integration with their choice of services.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

12

https://www.mongodb.com/blog/post/leaf-in-the-wild-mongodb-at-cern-delivering-a-single-view-of-data-from-the-lhc-to-accelerate-scientific-research-and-discovery
https://www.mongodb.com/contact
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting


MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2017 MongoDB, Inc. All rights reserved.

13

https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

	Table of Contents
	Introduction1
	Why Single View?1
	10 Step Methodology to Delivering a Single View2
	Step 1: Define Project Scope & Sponsorship2
	Step 2: Identify Data Consumers3
	Step 3: Identify Data Producers3
	Step 4: Appoint Data Stewards3
	Step 5: Develop the Single View Data Model4
	Step 6: Data Loading & Standardization4
	Step 7: Match, Merge, and Reconcile6
	Step 8: Architecture Design6
	Step 9: Modify the Consuming Systems7
	Step 10: Implement Maintenance Processes7

	Single View Maturity Model8
	Required Database Capabilities for Single View9
	Single View in Action11
	Conclusion12
	We Can Help12
	Introduction
	Why Single View?
	10 Step Methodology to Delivering a Single View
	Step 1: Define Project Scope & Sponsorship
	Step 2: Identify Data Consumers
	Step 3: Identify Data Producers
	Step 4: Appoint Data Stewards
	Step 5: Develop the Single View Data Model
	Identify Common Attributes
	Define Canonical Field Formats
	Define MongoDB Schema

	Step 6: Data Loading & Standardization
	Initial Load
	Delta Load
	Standardization

	Step 7: Match, Merge, and Reconcile
	Step 8: Architecture Design
	Step 9: Modify the Consuming Systems
	Step 10: Implement Maintenance Processes

	Single View Maturity Model
	Required Database Capabilities to Support the Single View
	Flexible Data Model
	Intelligent Insights, Delivered in Real Time
	Predictable Scalability with Always-on Availability
	Enterprise Deployment Model

	Single View in Action
	MetLife: From Stalled to Success in 3 Months
	CERN: Delivering a Single View of Data from the LHC to Accelerate Scientific Research and Discovery
	Global Airline: Enabling Customer Intimacy
	Single View Reference Architecture

	Conclusion
	We Can Help
	Resources

