
1

Full Lifecycle Service Management

Full Lifecycle Service
Management
Addressing the Challenges of Modern
Service Environments

ebook

2

Full Lifecycle Service Management

In a world with multiple, emerging options for
interfacing between microservices, a fixed,
myopic viewpoint will fail a growing business.
Modern teams succeed through the diversity
of the tools at their disposal for service
management. Moving beyond traditional API
management requires cultivating a vision
that prepares you for the future with flexible,
agnostic and adaptive strategies. In this
eBook, we introduce a framework for Full
Lifecycle Service Management and explain
how this approach will address the challenges
of modern service environments.

3

Full Lifecycle Service Management

Content

Understanding the Modern Era

Delving into the Data Problem

Envisioning the Next Era of Software

Build

Run

Automate

Adopting a Full Lifecycle Mindset

Case Studies

Embracing Full Service Lifecycle Management	

References

5

6

9

10

12

12

13

15

17

19

4

Full Lifecycle Service Management

We live in an exciting time for software; we are
witnessing a monumental shift in how applications
are built. We have the opportunity to participate
in the large-scale movement from centralized
applications to decentralized, highly performant
software architectures.

API and REST standards revolutionized the
exchange of data and connection between systems
and applications across the internet. The advent
of containers led to widespread adoption of
microservices on an unprecedented scale. Now as
we move into a cloud native, microservices-first
world, we can no longer rely on RESTful APIs alone to
meet the needs of the modern organization.

Instead, the move from monolith applications to
microservices requires a shift from API management
to service management. A service is any means for
interfacing data exchange between applications.
Modern teams succeed through the diversity of the
tools at their disposal for service management. They
work in different languages with diverse deployment
strategies in multiple clouds. They use the best tools
at their disposal to not only create the rules that drive
their businesses but also to intelligently derive the
rules using machine learning. They cannot be limited
by protocols, environments or cloud providers.

In a world with multiple, emerging options for
interfacing between microservices – from GraphQL
to Kafka to gRPC – a fixed, myopic viewpoint will fail
a growing business. Moving beyond traditional API
management requires cultivating a vision of flexible,
agnostic and adaptive strategies that prepares
you for the future. In this eBook, we introduce a
framework for Full Lifecycle Service Management
and explain how this approach will address the
challenges of modern service environments.

5

Full Lifecycle Service Management

Understanding the
Modern Era

We live in a world where services are launched and
updated faster than ever before – and on a much
greater scale. In a world where Netflix and Amazon
handle trillions of API calls every year, spinning up
capacity in a dynamic fashion while orchestrating
across a vast ecosystem of self-healing containers
all designed to ensure performance at scale, there is
truly no way to keep up without purpose-built tools.

As technology leaders advance what is possible,
consumer expectations rise accordingly. From a
consumer perspective, we live in an age of 24/7
availability, where services can be accessed
anywhere, anytime regardless of device or platform
in use. Consumers vote with the businesses they
continue to patronize, just as developers vote
with the platforms and protocols they support via
contributions to the ecosystem.

It is truly an exciting time to be a developer with
entirely new platforms for development emerging
every day. Now that mobile adoption has swept the
world, the emergence of the IoT category is already
leading another wave of service explosion. Rather
than simply preparing for this new platform, the
true imperative is to observe that regardless of the
emerging platforms today and even over the next 1-3
years, the world will continue to see the emergence
of new platforms, as well as new protocols and new
means for interfacing between applications.

Just in the last few years, we have seen compelling
alternatives emerge to RESTful APIs, each

6

Full Lifecycle Service Management

focused on a different use case for the technology
infrastructure community. A single GraphQL
query can get all the data your application needs,
potentially calling thousands of RESTful APIs in
the process. gRPC offers performance and ease
of development benefits, thanks to being based on
cross-platform, language-agnostic protocol buffers.
Kafka supports asynchronous microservice-to-
microservice communication by acting as an event
collector, allowing developers to replay event series
or reproduce the state data of a given timestamp.

All this is occurring despite the state of the legacy
architecture in the majority of enterprises, most of
which was created in a pre-iPhone world – before the
advent of containers, explosion of microservices and
need to coordinate complex, networked applications
on a massive scale. No one would ever believe
that the scale of innovation we are witnessing
in the broader ecosystem would be so terribly
disconnected from the actual state of affairs in most
enterprises, which is weighed down by systems
coming from a SOAP and ESB era.

Delving into the Data
Problem

Every team has its preferred languages for
development and connecting services. However,
when these differ from team to team within an
enterprise, how can a business deliver the speed that
consumers expect without seamless communication
between platforms? It could put hundreds of hours
of in-house or outsourced engineering toward
connecting disparate systems, but the opportunity
cost of that decision is all of the mission-critical

7

Full Lifecycle Service Management

applications that could have been developed with
that same effort. With the exchange of information
between the microservices in an enterprise, the
diversity of languages and protocols makes data
availability a mission-critical problem.

The emergence of new channels and velocity with
which new services are being launched threatens to
leave behind businesses that are not able to adapt.
Still telling is the classic example of Blockbuster
failing to adapt its business model for movie rentals
in light of the disruptive innovation introduced by
Netflix’ streaming rentals in 2007¹. Even though
Blockbuster devoted two years to building a
digital strategy and launching an on-demand, API-
powered offering in 2010², it was too little too late,
and the company declared bankruptcy only a few
months later. Conversely, those who are leading
the charge are seeing a reward for their efforts.
Stripe revolutionized online payments by taking a
developer-friendly, API-first approach in contrast to
the incumbent PayPal, leading to adoption by more
than 1 million businesses worldwide³.

While some argue toward expanding the definition
of an API to escape the concept being conflated
with REST, we should take a bolder stance: let’s
abandon the concept of API management entirely
since it no longer serves a world of such diverse
service integration scenarios. Instead, we should
consider APIs as simply one class of services
and move our focus up a level to the broader
class of service management, where a “service” is
defined as a means for interfacing data exchange
between applications.

¹ https://www.thrillist.com/entertainment/nation/netflix-history-streaming-in-2007
² https://www.theatlantic.com/technology/archive/2010/05/blockbuster-gone-digital/56276/
³ https://www.wired.co.uk/article/stripe-payments-apple-amazon-facebook

8

Full Lifecycle Service Management

This new focus on “service management” reflects
the underlying complexity of environments today.
The way forward is taking an agnostic approach –
designing services that work across any language.
However, it is not enough to stop there. Agnosticism
should also extend to deployment type – whether
monolithic, microservices or even bare metal – and
cloud provider. The point is to abstract away from
any specific technology or vendor so your team
can focus on designing the optimal service for your
business and customers.

Real Transformation Succeeds with Agnosticism

789:;;<=89>?<@A8B@C:BC<

9

Full Lifecycle Service Management

Envisioning the Next Era of
Software

We’ve taken a step back and re-evaluated where we
are focused. Rather than focusing on what we build
and making sure that all our services are RESTful,
we’ve shifted to thinking about how we build our
services. Taking a note from the DevOps principle of
unifying software development and operations, when
it comes to brokering information between mission
critical systems, it is time for us to bring this full
lifecycle approach to this domain as well.

It’s not about whether an API is RESTful, gRPC or
GraphQL. What ultimately matters is that each
service is a contract between the producer/provider
and the consumer. The consumer of a service
does not care about whether other parts of your
organization are adopting gRPC. The consumer
cannot tolerate breaking changes because they
lead to large scale failures of business-critical
applications they have built.

In the next era of software, we prevent this problem
by keeping the full lifecycle of a service in mind
through pre-production, production and post-
production. We have a powerful tool to do this
with the advent of spec-driven development, which
dissolves the boundary between a specification and
the implementation of that specification.

10

Full Lifecycle Service Management

The diagram above offers a framework for Full Service
Lifecycle Management. Let’s examine this vision in
three main phases – build, run and automate.

Build

The Build phase represents pre-production
activities for a service.

The first step of this phase is Design. In contrast to
past approaches where a specification was created
after implementation and then became out of date
when changes were made to an implementation
later, design in a full service lifecycle management
context takes a spec-driven approach. Spec-driven
development starts with the spec and dissolves any
disparity between the spec and the implementation.

!"#$ %&'-%&")*#+,"-

%".+-%&")*#+,"- %&'-%&")*#+,"-

)/+/
%1/-'.

+'.+

)'%1"2

!/-/3'

%*41,.5

)'.,3-

.'#*&,+2

/,

4*,1)

/*+"!/+' &*-

11

Full Lifecycle Service Management

The advantage of this approach is a much faster
cycle to mock and test a service, as well as a
reduced risk of breaking changes in the future.
Beyond the obvious operational benefits of this
approach, spec-driven development underscores
taking a design and development approach
that assumes responsibility for the successful
operation of services as well, since any operational
challenges in production or post-production will
need to flow back into the specification before the
implementation can be patched.

The second step is Mock. Mocking speeds up
development by providing developers with a reliable
imitation of how the service would work in real life.
They can build other tools and interfaces based on
assumptions about the behavior and structure of
the service’s responses.

The third step is Test. Testing provides greater
confidence and earlier warnings to development
teams before going into production. By using
isolated, discrete services instead of huge
monoliths, it’s easier to test and find problems at a
granular level and to surgically fix them one by one.

The final step is Deploy. After code has passed
the relevant tests and reviews, this step enables
release velocity by automating the decision to ship
the code. Rather than taking a manual process
with a fixed cadence, this step supports CI/CD
and means teams can release new application
code to production in minutes rather than only on
predetermined schedules. Release quality also
improves thanks to review process, tests and
validation of traffic defined in the specification.

12

Full Lifecycle Service Management

Run

The Run phase represents all production activities
for a service.

In the Manage step of this phase, an administrator
has visibility over the entire span of services in
production and can monitor their health in real
time, as well as make changes as needed. With
logic built into the endpoints of the system,
workflows can be managed and automated
between other key systems.

In the Publish step, the platform is live across all
relevant systems, whether on premise or cloud-
based, monolithic or serverless. The system is able to
perform even above 10,000 transactions per second
and to self-heal dynamically in case of unexpected
outages of individual microservices. Further, the
system is open to being extensible based on the
needs of various business lines for customization
due to specialized needs and use cases.

Automate

The Automate phase refers to all post-production
activities. In the post-production world, we shift
our focus to ensuring that the live system is
optimized and compliant, leveraging real-time
data and machine intelligence where possible to
make our job easier.

The Artificial Intelligence (AI) step of this phase
entails using machine learning to reduce manual

13

Full Lifecycle Service Management

tasks related to documentation and alerting
teams to critical service information. Pushing
documentation directly into an accessible,
search-friendly developer portal and automating
updates reduces manual effort significantly.
Analyzing traffic patterns and detecting anomalies
for business attention enables real-time threat
resolution. Artificial intelligence can also be used to
visualize information across all services, which is
increasingly important as complexity and number of
services increase.

The Security step of this phase involves creating
policies to help ensure that internally the system
is compliant with industry requirements. Role-
Based Access Controls (RBACs) ensure the data
being accessed aligns with the authorization
levels at the organization.

Adopting a Full Lifecycle
Mindset

Now that we have explained each of the phases of
the Full Service Lifecycle Management framework,
let’s highlight how these elements combine to
prepare an organization for the next era of software,
and each depend upon each other for success of
the whole. Remembering that these steps span the
phases of pre-production, production and post-
production helps paint this picture, and recognizing
linkage across non-sequential steps underscores
the importance of a “full-lifecycle” mindset.

In pre-production, our key challenge is to design and
build a service network that meets the performance

14

Full Lifecycle Service Management

requirements of the business and customer, offers
maintainability and will not become irrelevant as new
services and requirements emerge. Thus, the most
important link is between the “Build” and “Automate”
phases – public specification documentation
must be the starting and ending point for creating
and updating services relied upon by hundreds or
thousands of consumers. The developers creating
specs will still bear the responsibility to design with
a minimization of breaking changes in mind, so this
step also bears an important link to the Management
step of the cycle.

In the Run phase, the benefit of abstraction in the
Build phase comes to life. Instead of needing to
worry about a giant, tangled system, the fruits of a
successful Build phase are an orderly, transparent
and well-encapsulated set of services. This
abstraction is important, both for the later Automate
phase and for day-to-day management. In order to
ensure resilience and operational excellence, the Run
phase must be front of mind even before and after.
The Build phase is meant to make the Run phase
more manageable – all so that the Automate phase
can glean valuable information from it.

Running in production gives a wealth of information
about usage, health, behavior, and access. Through
Automation, systems can glean insights from that
information and act on your behalf. Having taken a
full-lifecycle approach means that you are set up to
reduce many manual tasks since your production
environment can be readily visualized and analyzed
with machine intelligence. You also have the
flexibility to adjust the policies that apply to your
environment in the Automate phase, with these
changes going into effect and directly impacting
what you have in production.

Taken together, the approach laid out is the synthesis
of lessons learned from organizations already in the
trenches operating modern services.

15

Full Lifecycle Service Management

Case Studies

Let’s examine a few case studies to develop some
feel for how this model could actually exist in the
real world.

Medallia is a computer software company that
empowers customer and employee engagement
with real-time data, insights and tools captured from
a variety of channels. As part of its growth efforts,
Medallia understood the importance of leveraging
APIs and microservices in order to increase speed
and efficiency across its platforms. The organization
needed increased governance over its APIs in
order to eliminate redundancies in its code while
maximizing efficiency. Tasked with designing the
company’s API structure, the engineers at Medallia
were looking for a lightweight, performant solution
that could handle all of their needs in the present
and future.

To address the issue, Medallia decoupled services
by separating business logic from the message
layer and employing a lightweight structure to
maximize scalability and resource efficiency.
Medallia also implemented standardization across
all API gateways. As a result, Medallia saw full
application deployment times reduced by over
80 percent, increased DevOps efficiency and
productivity, and was able to handle over 10,000
TPS with no performance issues.

Headquartered in Minneapolis, Minnesota, Cargill
combines extensive supply chain experience with
new technologies and insights to serve as a trusted
partner for food, agriculture, financial and industrial
customers across more than 125 countries. One of

16

Full Lifecycle Service Management

the largest private companies operating today, Cargill
employs over 150 thousand people worldwide and
handles logistics for over 33 percent of the world’s
food supply.

However, Cargill’s legacy IT systems were slowing
its ability to create new digital products and
services to address the evolving needs of its
customers and partners. In response to these new
digital imperatives, Cargill began the process of
transforming its internal suite of APIs to be more
dynamic, thereby enabling consumption across the
entire company.

Cargill unified developer experience across legacy
and cloud native systems, defining how services
behave and then automatically scaling those
services up or down depending on the situation. As
a result, more than 400 new digital services were
created with up to 65 times faster deployment times
due to automated validations.

SoulCycle offers cycling-based fitness classes across
the U.S., Canada and Europe. SoulCycle is a growing
fitness market leader with more than 50,000 riders a
week attending classes. It is committed to nurturing
the health and happiness for the community.

With aggressive growth targets, SoulCycle needed to
leverage technology to better integrate with partners
and enable expansion into new business models.
Challenging this vision, SoulCycle’s monolithic
architecture presented a critical bottleneck to service
development and scalability. SoulCycle began
transitioning several of its applications to a service-
oriented architecture, leveraging containerization and
Kubernetes to accelerate their development process.

17

Full Lifecycle Service Management

Soulcycle used a single API platform to unify
Kubernetes microservices and monoliths across its
multi-cloud environment, with horizontal and vertical
scaling enabled and a unified entrance point for all
services. As a result, the company saw more than
triple the improvement in developer efficiency, as
measured by average releases per week before and
after the solution went live.

These examples showcase a variety of problems
across the range of Full Service Lifecycle
Management and the tangible benefits seen from
moving further toward a more mature service
management capability in the enterprise.

Embracing Full Service
Lifecycle Management

We’ve identified how the world is changing, why data
is the key problem to solve and laid out a solution
framework.What’s the next step? When thinking
about getting started with moving towards this
vision, it’s important to focus on taking manageable,
incremental steps that minimize the risk of failure
while also maximizing the basis for a strong
foundation to grow toward eventual maturity.

The cycle begins with Design because spec-driven
development is the best place to start. You can
pick a few services to begin introducing spec-first
development. Obvious candidates are any that are
already leveraging OpenAPI (formerly Swagger)
as a framework. The other benefit of starting with
this step is it represents mostly process rather than
organizational changes.

18

Full Lifecycle Service Management

You can introduce spec-driven development without
moving developers between departments – this
step is mostly about expanding the purview of the
developer at the point of design.

The next step is taking an inventory of the existing
range of interfaces, languages and protocols in your
current architecture and medium-term roadmap
for connecting the services across your enterprise.
Whether you are coming from a monolithic or
serverless world, there is a set of services relevant
for your immediate department as well as the
broader ecosystem within the enterprise and
the broader industry. The ideal inventory reflects
mission-critical services, as well as what needs
to be added and expanded for ideal operation and
optimization of the enterprise at scale.

Finally, the Full Service Lifecycle Management
framework presented in this piece is not meant
as a rigid rulebook for developing your technology
roadmap. Rather, consider this framework a resource
for holistically considering how services interact
within your enterprise and proactively identifying
service management gaps that are critical to
address. Do you have visibility into services in
production across the enterprise with the ability to
dynamically address issues as they occur? How well
does your development team document updates
to APIs and other services? Where are you using
services beyond RESTful APIs, and what is your
plan for interoperability and unified communication
between those services and RESTful services?

Lastly, agnosticism is the best guiding principle
for the challenges of modern services. Being able
to bring your own technology – any language,
deployment or cloud – to the table is key for
success. After taking these steps, you will be able to
carve out a portion of services to reimagine with the
full service management lifecycle in mind.

19

Full Lifecycle Service Management

References

1.	 http://itrevolution.com/the-three-ways-principles-
underpinning-devops/

2.	 https://martinfowler.com/articles/microservices.html
#CharacteristicsOfAMicroserviceArchitecture

3.	 https://thenewstack.io/netflix-devops-scale/
4.	 https://apievangelist.com/2018/02/03/api-is-not-

just-rest/
5.	 https://www.amazon.com/Domain-Driven-Design-

Tackling-Complexity-Software/dp/0321125215
6.	 https://martinfowler.com/articles/

consumerDrivenContracts.html
7.	 https://www.atlassian.com/blog/technology/spec-

first-api-development
8.	 https://martinfowler.com/articles/microservices.

html#SmartEndpointsAndDumbPipes
9.	 https://thenewstack.io/kong-at-1-0-a-service-

control-platform/
10.	 Kong Enterprise Datasheet:

https://2tjosk2rxzc21medji3nfn1g-wpengine.
netdna-ssl.com/wp-content/uploads/2018/10/
Kong-Datasheet-Next-generaton-API-
Platform-2-12-19.pdf

11.	 https://buttercms.com/books/microservices-for-
startups/breaking-up-a-monolith

12.	 https://levelup.gitconnected.com/grpc-in-
microservices-5887caef195

Konghq.com

Kong Inc.
contact@konghq.com

150 Spear Street, Suite 1600
San Francisco, CA 94105
USA

