
Getting started with tiny.pictures
Setting up your account and deploying real-time image optimization to your website in an instant

Simple HTML integration
We provide your new image optimization infrastructure under your personal sub domain at
https://demo.tiny.pictures/main. The main directory works as a shortcut to your image source servers at
https://your.website/.

Additionally, it adds all the image optimization functionality you need and delivers your images through a Content
Delivery Network.

You are now able to apply image operations by simply swapping the host name of your image URLs and adding some
query parameters:

<img
 alt="Your original image"
 src="https://your.website/example1.jpg">
<img
 alt="The same image in grayscale (delivered by tiny.pictures)"
 src="https://demo.tiny.pictures/main/example1.jpg?grayscale=true">

Responsive images
Thanks to HTML5's srcset and sizes attributes you can now speed up your website by delivering perfectly-sized
images to your users – no matter what type or size of device they use. These attributes tell the browser that there are a
couple of differently sized image candidates to choose from and how large the image will be displayed on the web page.
Together with other information already known to the browser – e. g. viewport size, device pixel ratio, network bandwidth,
and supported file formats – the browser automatically chooses the best image candidate.

<img
 alt="Image candidates width widths of 200, 500, and 800 pixels,
 displayed at 50% of the viewport width"
 srcset="https://demo.tiny.pictures/main/example1.jpg?width=200 200w,
 https://demo.tiny.pictures/main/example1.jpg?width=500 500w,
 https://demo.tiny.pictures/main/example1.jpg?width=800 800w"
 sizes="50vw">

That's quite a lot of code, right? That's why we offer both client and server libraries to make implementing such
advanced HTML a whole lot easier.

Lazyloading and automatic srcset and sizes calculation with
our JavaScript client library
Coding srcset and sizes attributes over and over again can be a tedious and error prone task. That's why you as a
good developer are probably also a lazy developer… Take a look at how our JavaScript client library may help you:

https://tiny.pictures/documentation/operations
https://tiny.pictures/documentation/js-library

<img
 alt="This image will be lazyloaded and automatically wrapped by an HTML5 picture element"
 class="tp-lazyload"
 data-tp-src="https://your.website/example1.jpg"
 data-tp-sizes="auto">

<script src="https://cdn.jsdelivr.net/npm/tiny.pictures-js@4.1.1/dist/browser.js"></script>
<script>
 var tinyPictures = new TinyPictures({
 window: window,
 user: "demo",
 namedSources: [{"name":"main","url":"https://your.website/"}],
 srcsetWidths: [200,500,800]
 })
 tinyPictures.lazyload()
</script>

Our library automatically converts your img element to a comprehensive picture element with lazyloading, automatic
image candidate selection and support for the WebP image format.

Server-side libraries
One drawback of the client-side JavaScript technique is that the browser starts loading images only after the JavaScript
is loaded and executed. For "above the fold" images you might want to use a server-side solution. That's why we also
offer several server-side libraries, e. g. for Node.js.

const TinyPictures = require('tiny.pictures-js')
const tinyPictures = new TinyPictures({
 user: 'demo',
 namedSources: [{"name":"main","url":"https://your.website/"}],
 srcsetWidths: [200,500,800]
})
const imageUrl = "https://your.website/example1.jpg"

const middleware = (req, res) => {
 return res.send(`
 <img
 alt="The image in grayscale (delivered by tiny.pictures)"
 src="${tinyPictures.url(imageUrl, {grayscale: true})}">
 <img
 alt="Image candidates width widths of 200, 500, and 800 pixels,
 displayed at 50% of the viewport width"
 srcset="${tinyPictures.srcsetArray(imageUrl, {grayscale: true}).join(', ')}"
 sizes="50vw">
 `)
}

For more information, please take a look at our documentation for the Node.js and PHP library.

<picture>
 <!--[if IE 9]><video style="display: none"><![endif]-->
 <source type="image/webp" srcset="https://demo.tiny.pictures/main/example1.jpg?format=webp&width
 <source srcset="https://demo.tiny.pictures/main/example1.jpg?width=200 200w,https://demo.tiny.pi
 <!--[if IE 9]></video><![endif]-->
 <img class="tp-lazyloaded" src="https://your.website/example1.jpg" srcset="https://demo.tiny.pic
</picture>

https://tiny.pictures/documentation/js-library
https://tiny.pictures/documentation/php-library

