
www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

The JFrog Journey to Kubernetes:

Best Practices for Taking Your
Containers All the Way

to Production

February 2019 | www.jfrog.comCopyright © 2019 JFrog Ltd.

1www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

Table of Content

Executive Summary

Introduction

 Kubernetes Cluster

 CI/CD Pipeline

 Kubernetes Registry

1.Getting Your Application Ready for Kubernetes

 Questionnaire Checklist: Preparing Your App for K8S

2. Gaining Flexibility and Universality in Kubernetes

Deploying Artifactory as Your Kubernetes Registry

3. Automating Deployment to Kubernetes

Deploying Artifactory as Your Helm Chart Repository

 Best Practices for Deploying Apps in your CI/CD Pipeline

4. Building Reliable and Scalable Environments in Kubernete

Deploying Artifactory HA in Kubernetes

 Storage and Scalability of Your Kubernetes Cluster

5. Visibility and Security: Protecting Your Apps in Kubernetes

Gaining Visibility into Your Containers in K8S

Scanning and Detecting Vulnerabilities in Containers

Protecting Your Open Source Projects in K8S

Preventing Unauthorized Access Using Tillerless in Helm 2

Setting Kubernetes with RBAC

6. Logging, Monitoring and Debugging Your Apps in K8S

Best Practices for Logging Your Apps in Kubernetes

Continuous Monitoring of Your Microservices in K8S

7. Deploying Your App to Production in K8S

10 Tips for Smoothly Embarking on Your Journey to Production

Conclusion

1

2

3

3

3

3

4

4

5

5

6

6

6

7

7

7

8

8

8

8

9

9

10

10

10

11

11

12

table of content

2www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

“When we moved to microservices in Kubernetes, we went from 12 releases a year to doing

2,200 releases with a much lower failure rate.”

Sarah Wells, Tech Dir. for Operations and Reliability, Financial Times.

Kubernetes has become the de facto leading orchestration tool in the market and not only for

technology companies but for all companies as it allows you to quickly and predictably deploy

your applications, scale them on the fly, seamlessly roll out new features while efficiently

utilizing your hardware resources.

The JFrog journey with Kubernetes started when we were seeking a suitable container

orchestration solution to spin up a fully functional environment for internal purposes. Our

developers needed to test our very complex environments including JFrog Artifactory and

other products. In parallel to that, we needed to provide the program and product managers

with a fully functional environment for demoing the JFrog Enterprise+ platform to our

customers.

To meet our needs, each product required an independent CI/CD development environment

allowing for testing the individual branches in isolation from others while testing the

interaction between the branches.

As we gained confidence in Kubernetes, we acknowledged the value of distributing the JFrog

products to Kubernetes while having the ability to run the applications across different

staging, development and production environments. Kubernetes also allowed us to better

utilize our resources as we no longer were required to spin up a single VM for deploying each

product separately. In this white paper, we share our best practices, tips and lessons learned

when taking containerized applications all the way to production with Kubernetes.

executive summary

https://jfrog.com/enterprise-plus-platform/

3www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

introduction

Kubernetes lets you create containerized apps and deploy them side-by-side without being

concerned about compatibility between the various services and components. The benefit of

containerizing an app and running it in Kubernetes is that you get to develop your product

within a vibrant community which makes it easier to create . The scalable microservices apps

downside to that is that when you have an entire team working on the various components, it

becomes rather complex rather quickly. Adding to all that is the fact that your containerized

apps can contain multiple component types depending on the operating system, language,

and framework(s) you are using.

Let’s begin with the three essential components required for running your application with

Kubernetes:

kubernetes cluster
The Kubernetes cluster is the orchestration infrastructure where your containerized

application runs. You need to decide if you want to manage it yourself or not and if you want

to host it using a cloud provider. This component is not discussed in this scope of the

document.

ci/cd pipeline
The CI/CD pipeline runs in Kubernetes and automates the process, starting from the

source code and external packages to deploying your application in a Kubernetes cluster.

Kubernetes pipelines are ‘application aware’, meaning they are natively capable of dynamically

provisioning a full containerized application stack (generally composed of multiple services,

deployments, replica sets, secrets, configmap, etc.). Every change to the application context,

whether code, base-layer, image, or configuration changes, will in turn trigger a pipeline.

kubernetes registry
Your production clusters should use a single, managed and trusted source of truth that stores

and tracks all pieces making us your applications and dependencies. Using the Kubernetes

registry, you can run multiple application stacks side-by-side in a pod without conflict and

without caring about the internal dependencies of each app. This separates the concerns

between maintaining a running cluster, scaling applications up and down, developing new

versions, and debugging application specific issues.

https://jfrog.com/blog/control-your-kubernetes-voyage-with-artifactory/
https://jfrog.com/blog/the-3-kubernetes-essentials-cluster-pipeline-and-registry/
https://jfrog.com/blog/jfrog-artifactory-kubernetes-registry/

4www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

Your application is the heart of your service/solution. You need to plan and prepare your

application before you can run it in Kubernetes.

Questionnaire Checklist: Preparing Your App for K8S

The following table shows the application-related tasks and questions you must ask before

you prepare your application for Kubernetes.

How is your application logging set up?

Where will the logs be saved?

Do you need logs files or perhaps using

STDOUT/STDERR is sufficient?

How will you handle multiple log files?

Is your application stateful?

Does it require data persistence?

What part of your data needs persistency?

How do you handle termination signals?

How will you survive a restart?

What happens if you kill the pod?

What happens if you crash the process in the pod?

What happens if the K8S node crashes?

How does the application behave?

How should I set up my nodes and load balancer to

achieve zero service unavailability of my

application/service?

Do your applications have endpoints that can

be used to check health and readiness using the

Liveness and Readiness Probes?

Data Persistency

Termination Signals

Logging

Application Restart

High Availability

Probes

 k8s Guru Tip
Consider turning your logs to

soflinks by setting /dev/stdout or

/dev/stderr thereby ensuring all your

logs are part of the container log.

 k8s Guru Tip

Don't store all your data on a

persistent storage. Store only persistent

data.

 k8s Guru Tip

A great way to test your application

recovery is to kill the pods or, kill the

nodes, and see what happens?

 k8s Guru Tip

Plan for zero service unavailability allowing for

pod scheduling when performing cluster scaling

(down) and planned node maintenance.

 k8s Guru Tip
Proper use of probes can help you

implement a great “auto-healing” process

for your applications and will save your

engineers many sleepless nights.

For more information on the basics of building your software as a service, see .The Twelve-Factor App

TASKS QUESTIONS

 k8s Guru Tip

Use trap in your container bash

entrypoint to catch termination

signals and handle them properly.

1. getting your application ready for kubernetes

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://12factor.net/

5www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

2. Gaining Flexibility and Universality in Kubernetes

Polyglot programming and multiple disparate tools and technologies provide a

multitude of possibilities. You can pick and choose the ones that best meet your

business needs, but each technology may have a different interface, REST API and its own

package format. The only way to support these tools is to be versatile by going universal in

how you manage your artifact lifecycle from creation to deployment.

Deploying Artifactory as Your kubernetes Registry
You can gain flexibility and universality by using Artifactory as your “Kubernetes Registry”

as it lets you gain insight into your code-to-cluster process while relating to each layer for

each application and act as your single source of trusted truth. Artifactory supports 25+

different technologies in one system with one metadata model, one promotion flow, and

strong inter-artifact relationships.

Artifactory allows you to deploy containerized microservices to the Kubernetes cluster as it

serves as a universal repository manager for all your CI/CD needs, regardless of where

they are running in your organization. Once you check in your App package, you can

proceed to propagate and perform the build, test, promote and finally deploy to

Kubernetes. To easily deploy Artifactory (and other JFrog products) to Kubernetes, refer to

our official JFrog helm charts in the Helm hub.

Kubernetes
Registry

https://jfrog.com/blog/leap-into-the-universe-of-fearless-updates/
https://jfrog.com/integration/
https://jfrog.com/artifactory/
https://hub.helm.sh/charts/jfrog

6www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

Facilitating the deployment of applications reliably at scale without the need for human

intervention at every stage of the CI/CD pipeline is the main reason for orchestration.

But how do you get your code into the cluster in a repeatable, reliable way? And how do you

make sure that only the right version of your app makes it to production?

To accomplish this, we propose deploying Artifactory as your repository manager, to play a

vital role in your CI/CD pipeline by bridging the gap between development and operations.

Deploying Artifactory as Your HELM CHART REPOSITORY
Artifactory natively supports Helm repositories, giving you full control of your deployment

process to Kubernetes. It provides secure, private, local Helm repositories to share Helm

charts across your organization with fine-grained access control. Proxies and caches public

Helm resources with remote repositories, and aggregates local and remote resources under a

single virtual Helm repository to access all your Helm charts from a single URL.

3. BUILDING Automating Deployment to Kubernetes

When using Artifactory as your

Helm repository, we recommend:

 k8s Guru Tip

Separating your Stable and

Incubator repositories.

Using SemVer version 2 versions

in your charts.

Periodically recalculating the

index.yaml file from scratch in

Artifactory.

Best Practices for Deploying Apps in your CI/CD Pipeline
When deploying your applications in your CI/CD pipeline, we recommend:

Using the same Helm chart for local, Staging, Testing and Production while using a

separate values.yaml file for each environment. Each yaml needs to contain specific

environment configuration values. For example: values-stg.yam, value-prod.yaml.

Managing the custom values in your VCS.

Settings in the default values.yaml should be for dev or local, so the developer can use it

locally without hassle.

Using external charts for dependencies. Use the work already done by the community!

For security purposes: Separate your secrets from your charts and reference them as

external charts.

https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory
https://jfrog.com/integration/helm-repository/
https://jfrog.com/blog/master-helm-chart-repositories-artifactory/

7www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

4. BUILDING Reliable and Scalable Environments in Kubernetes

Running multiple applications side-by-side in your Kubernetes cluster requires establishing

continuous access to your artifacts, while supporting heavy load bursts with zero downtime.

Deploying Artifactory HA in Kubernetes
By deploying Artifactory HA in the Kubernetes cluster, you will experience zero service

unavailability due to any type of pod scheduling when it comes to cluster scaling, if a pod is

evicted or crashes, or in case of an unplanned outage of a node.

Accommodates larger load bursts with no compromise to performance.

Provides horizontal server scalability, allowing you to easily increase your capacity to meet

any load requirements as your organization grows.

Supports performing most maintenance tasks with no system downtime.

Supports rolling upgrades as newer versions can be installed on instances by replacing

individual instances of your application with zero downtime.

In the following example, an Artifactory HA cluster is deployed using three nodes: a primary

node and two member nodes. As load balancing is performed on the member nodes only.

This leaves the primary node free to handle jobs and tasks and not be interrupted by

inbound traffic.

The benefits of deploying Artifactory HA in Kubernetes are:

Storage and Scalability of Your Kubernetes Cluster
Artifactory HA allows you to push the limits of your applications in Kubernetes as it supports

a wide array of storage alternatives. For more information, see .Configuring the Filestore

You can use this predefined Artifactory High Availability Helm chart to create your own

Artifactory HA environment.

Member node 1Member node 0

Primary node

DatabaseHelm install

Persistent Storage

Persistent Storage

Persistent Storage

Persistent Storage

https://hub.helm.sh/charts/jfrog/artifactory-ha
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore

8www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

5. Visibility and Security: Protecting Your Apps in Kubernetes

Recommended Reading:

9 Kubernetes Security

Best Practices Everyone

Must Follow

 k8s Guru Tip

Cloud-native technologies like Docker and Kubernetes present a larger attack surface, with

more potential entry points for malicious crypto mining, ransomware, and data theft.

Services running in your Kubernetes cluster are not totally isolated and may have access to

other areas in your cluster.

Just for that reason, visibility into your cluster is crucial especially from a security perspective.

You need to know what's running in your containers as your application rarely contains a

single component but rather includes external dependencies such as OS packages, OSS libs,

and 3rd party processes. This leads to the inevitable questions - Are they safe? Do they

contain security vulnerabilities? Do they abide to FOSS license compliance?

Gaining Visibility into Your Containers in K8S
Artifactory gives you insight into the CI/CD process by providing auditability as it captures a

substantial amount of valuable metadata that’s emitted throughout the CI/CD process. You
can trace the CI job responsible for producing the application

tier that is part of the Docker image layer. It can also show build

differences by allowing you to compare two builds, making it easy

to trace which layer of your Docker image was generated to which

build so you can track it down to the commit.

Scanning and Detecting Vulnerabilities in Containers
JFrog Xray works with Artifactory to perform universal analysis of binary software artifacts

at any stage of the application lifecycle. It runs a recursive scan of all of the layers in your

container and helps identify vulnerabilities in all layers by scanning and analyzing

 and their metadata, recursively going through dependencies at any level.artifacts

Policies can be set in Xray to limit or prevent deployment of container images to

Kubernetes according to the level of risk indicated by what Xray’s scans find. In this way,

vulnerable or non-compliant applications can be kept from running, or limited in what

they are allowed to do when they are launched.

Protecting Your Open Source Projects in K8S
Most applications rely heavily on dependencies from package managers and open source

repositories, and are therefore vulnerable to either malicious or insecure code from

these sources. As part of our initiative to support and contribute to the Open Source

community, JFrog has developed KubeXray, an open source project that extends the

security of Xray to the applications running (or about to run) in your Kubernetes pods.

Using the metadata that Xray generates by scanning container images, KubeXray can

enforce your policies on what has already been deployed.

https://jfrog.com/integration/kubernetes-docker-registry/
https://www.jfrog.com/confluence/display/RTF/Fixed+Security+Vulnerabilities
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://jfrog.com/xray/
https://jfrog.com/blog/xray-policies-govern-your-software-supply-chain-with-ease/
https://jfrog.com/blog/jfrog-kubexray-extends-deep-scanning-security-to-kubernetes-runtime/
https://jfrog.com/open-source/

9www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

KubeXray monitors all of your active Kubernetes pods to help you:

Preventing Unauthorized Access Using Tillerless in Helm 2
Helm 2 includes a server-side component called “Tiller”. Tiller is an in-cluster server that

interacts with the Helm client, and interfaces with the Kubernetes API server.

Tiller is definitely cool but it is important to be aware that there are security issues related to

Tiller in Helm 2. This is because the Helm client is responsible for managing charts, and the

server is responsible for managing the release. This poses a great risk as Tiller runs with root

access and someone can get unauthorized access to your server.

Rimas Mocevicius, a Kubernaut at JFrog and co-founder of Helm proposes an innovative

approach to addressing this situation by running Helm and Tiller on your workstation or in

CI/CD pipelines without installing Tiller to your Kubernetes cluster. To get you up and running

you can download and install the Tillerless Helm v2 plugin.

Setting Kubernetes with RBAC
Setting RBAC (Role-based Access Control) as an administrative function for Kubernetes is a

must as it allows you to define which user can administer the cluster and its granularity. In

addition to defining which users and applications can be listed, while getting, creating or

deleting pods and other Kubernetes objects. If you do not specify a service account, it

automatically assigns it to the pod as the “default” service account in the same namespace.

We recommend not using the default which comes with the namespace. Always create a

service account for your application as it will allow you to set your application limiting

including namespace or cluster-wide actions, and totally disabling access to Kubernetes API.

Catch newly reported risks or vulnerabilities in applications that are currently running in

all Kubernetes pods.

Enforce your current policy on running applications, even after you have changed those

policies.

Enforce policy for running applications that have not been scanned by Xray, and whose

risks are unknown.

A good practice is to disable the access to API by

setting “automountServiceAccountToken: false” in

the created service account for the application.

 k8s Guru Tip

 k8s Guru Tip

Adhere to the Least Privileges Principle by

granting the least permissions to users when

accessing your applications in Kubernetes!

https://jfrog.com/blog/is-your-helm-2-secure-and-scalable/
https://github.com/rimusz/helm-tiller

10www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

The number of microservices is growing together with increasing complexity and the question

is how do you track and monitor them and what should you be monitoring. When is comes to

microservices, you need to collect data for:

Continuous Monitoring of Your Microservices in K8S
The need for continuous monitoring of your system and application health is critical!

There are many free and commercial solutions for real-time monitoring of your Kubernetes

cluster and the applications running in it. One of the popular solutions is the combination of

Prometheus and Grafana, which provide real-time monitoring which can be combined with

alerting tools.

Unexpected events: For example, a change of ownership executed in a database

container.

Typos causing a microservice to go down.

Incorrect files selected in production causing chaos.

A specific base OS version was not allowed.

Best Practices for Logging Your Apps in Kubernetes
Application and system logging is essential for troubleshooting your Kubernetes cluster

activity.

Follow these best practices when logging your applications in Kubernetes:

Limit direct access to the logs.

When using the Kubernetes Dashboard (not recommended for production), set the

dashboard as read-only with access rights. You can allow other members to perform

troubleshooting, but refrain from providing full access to the dashboard as it can cause

damage to your Kubernetes cluster.

Make sure your logs are accessible in real-time and available for analysis at a later stage.

Use a log collecting tool, such as the ELK/EFK stack (ElasticSearch, Logstash/Fluentd and

Kibana), to collect and index all logs from your system and applications.

Consider saving your logs in a separate cluster to consume the logs at a later stage. This is

especially useful if your cluster goes down allowing you to gain access to the logs.

6. LoggingLogging, Monitoring and Debugging Y, Monitoring and Debugging Your Apps in K8Sour Apps in K8S

https://blog.kubernauts.io/cloud-native-monitoring-with-prometheus-and-grafana-9c8003ab9c7

11www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

Based on our journey, we recommend you read these 10 tips before embarking on

your journey to Kubernetes.

10 Tips for Smoothly Embarking on Your Journey to Production
1. For beginners, we recommend starting by reading Kubernetes the hard way!

2. Start small. Learn from examples and start with a small application (nginx), use
existing demos, and try deploy your apps in Skin Kubernetes for Docker.

3. Get your application ready before jumping into K8S.

4. Set a minimal goal for getting your application to run in K8S.

5. Use managed K8S to free your work for example: AKS, ESK or GKE, which
abstract lots of the complication for you.

6. Have one main container per POD.

7. We recommend trying the Managed GKE when selecting managed Kubernetes.

8. Determine where to store your database in or outside the Kubernetes cluster.
This is critical, as you need to plan for cluster recovery in case of cluster crashes.
Consider the following:

9. When deploying to cloud, separate your clusters for running your CI/CD pipeline.

Deploy from external CI/CD pipelines to the Kubernetes clusters.

10. Work with the community!

When K8S running On-Prem: Use your existing database on-prem as a stateless

app in Kubernetes.

When running K8S on the cloud: Select a persistent database like PostgreSQL or

MySQL operator that knows how to recover when a Kubernetes node goes down.

7. DeploDeploying Yying Your App to Production in K8Sour App to Production in K8S

https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/README.md

12www.jfrog.comAll rights reserved 2019 © JFrog Ltd.

As described in this whitepaper, we showed how Kubernetes together with JFrog Artifactory

allows you to reliably and predictably deploy your applications, scale them on the fly,

seamlessly roll out new features and efficiently utilize hardware resources.

This hands-on-guide was intended to review the complexity and the challenges facing

companies wanting to adopt Kubernetes as their container orchestration tool. We hope that

the lessons learned, best practices, and tips we shared will help get you up and running on

your voyage to Kubernetes.

Conclusionconclusion

	Table Of Content
	Executive Summary
	Introduction
	Getting Your Application Ready for Kubernetes
	Gaining Flexibility and Universality in Kubernetes
	Automating Deployment to Kubernetes
	Promoting Reliable and Scalable Environments in Kubernetes
	Visibility and Security: Protecting Your Apps in Kubernetes
	Logging, Monitoring and Debugging Your Apps in K8S
	Deploying Your App to Production in K8S
	Conclusion

