
The #1 Platform for Connected Data

neo4j.com

WHITE PAPER

The Graph Technology
Buyer’s Guide
What You Should Know before Selecting
a Graph Technology Solution
Amit Chaudhry, Vice President, Neo4j

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com1

White Paper

The #1 Platform for Connected Data

The Graph Technology
Buyer’s Guide
What You Should Know before Selecting
a Graph Technology Solution
Amit Chaudhry, Vice President, Neo4j

Introduction
The graph technology market is heating up with a wide variety of database and analytics
vendors staking claim to supporting graph (connected data) capabilities.

The challenge for the modern technology buyer is weeding through mountains of material
in order to make an informed buying and implementation decision. This challenge is
compounded because graph technology is a new way of managing data. Data consistency,
performance, scalability and other important characteristics of any database technology are
all much different with graph databases than with traditional data management platforms like
relational databases (RDBMS).

This buyer’s guide is designed to help expedite those decisions and explain what makes
purchasing this type of technology so different from other database purchase decisions. For
the full list of buying criteria and questions, skip to Part 2 on page XX. For readers who aren’t
yet familiar with the basics of graph technology, we’ll start with a brief introduction.

TABLE OF CONTENTS

What Are Graph Databases
Good for? 4

Traditional Technology Choices
Do Not Consider How Data Is
Interrelated 5

Collections vs. Connections 6

Property Graphs Are
Intentionally Simple 7

Benefits of Graph Databases 8

Structure 10

Open Source Foundation &
Community 10

Native Graph Storage 11

ACID Compliance 11

Graph Query Languages 13

Hybrid Transactional-Analytic
Platforms (HTAP) 15

OLTP Applications 15

Query Traversal Performance
Benchmark Comparisons 17

Graph Analytics 18

Data Integration & Ingestion 18

Graph Platform with Tools
& Support for All Types of
Users 19

Developer Tooling 20

Visualization Capabilities 21

Deployment, Scaling &
Administration 22

Business Model, Focus
& Staying Power 26

Conclusion 28

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/why-graph-databases/?ref=pdf-white-paper-buyers-guide

neo4j.com2

The Graph Technology Buyer’s Guide

Part 1:
What Are Graph
Databases Good for?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com3

The Graph Technology Buyer’s Guide

 Viewed through a
technological lens,
graph databases
tackle the most
harrowing of data
problems – ones that
often linger at the
root of project failures
and delays.

What Are Graph Databases Good for?
Graph database technology is specifically designed and optimized for highly interconnected
datasets to identify patterns and hidden connections.

Graph data stores are intuitive because they mirror the way the human brain thinks and
maps associations via neurons (nodes) and synapses (relationships). A graph database
efficiently stores and queries connected data in a node-and-relationships format. As
a result, graph technology excels at problems where there is no a priori knowledge of
path length or shape by using graph storage and infrastructure to find neighboring data
efficiently.

The most common graph use cases and solutions include:

• Fraud Detection & Analytics: Real-time analysis of data relationships is essential to
uncovering fraud rings and other sophisticated scams.

• Artificial Intelligence & Machine Learning: Artificial intelligence (AI) winners
and losers will be decided based on who harnesses context within data for a true
competitive advantage.

• Real-Time Recommendation Engines: Graph-powered recommendation
engines help companies personalize products, content and services by building a
contextualized map of offers using both historical and real-time data.

• Knowledge Graphs: Graph-based search tools tap into your organization’s
institutional memory. They are also used for better digital asset management.
Moreover, knowledge graphs are the basis for many natural language processing
(NLP) and AI solutions.

• Network & Database Infrastructure Monitoring: Graph databases are inherently
more suitable than RDBMS for making sense of complex interdependencies central
to managing networks, data centers, cybersecurity and IT infrastructure.

• Master Data Management (MDM): The schema-optional graph database model
allows you to organize and manage your master data with flexibility. It also lets
you harness real-time insights and a 360° view of your customers, products and
employees.

What these use cases have in common is that their success requires solving complex
problems with dynamic and interconnected datasets. To this end, we should reframe the
question, “What are graph databases good for?” as a technical one.

Viewed through a technological lens, graph databases tackle the most harrowing of data
problems – ones that often linger at the root of project failures and delays. These include:

• Vastly different views of the data model between business and technology teams,
which result in misunderstanding and miscommunication.

• Lack of schema flexibility and adaptability, making it hard to respond to changing
business requirements both during a project and after a system has gone live.

• The “JOIN problem” which occurs when queries become so tangled that even
powerful databases with massive amounts of hardware resources grind to a halt in
their attempts to bring the resulting data together.

With the right choice of technologies, graph databases introduce a new way of looking at
data by promising to significantly address all of these issues. They seek to take you beyond

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-white-paper-buyers-guide/#definition
https://neo4j.com/use-cases/fraud-detection/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/artificial-intelligence-analytics/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/real-time-recommendation-engine/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/knowledge-graph/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/network-and-it-operations/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/master-data-management/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/why-graph-databases-are-the-future/?ref=pdf-white-paper-buyers-guide/#definition

neo4j.com4

The Graph Technology Buyer’s Guide

handling sheer volumes of relatively simple data and towards revealing the interconnected
complexities latent in your data – and deriving bottom-line value from them.

Traditional Technology Choices Do Not
Consider How Data Is Interrelated
Today’s data and applications require elasticity, agility, speed and interconnectivity. Despite
the name, relational databases are not well-suited for modeling and storing today’s highly
connected and agile datasets. RDBMS demand slow and expensive schema redesigns that
hurt agile software development processes and hinder your ability to scale and innovate
quickly.

Traditional RDBMS technology has a difficult time expressing and revealing how real and
virtual entities are related. Columns and rows aren’t how data exists in the real world.
Rather, data exists as rich objects and the relationships between those different objects.

The theory of connected networks (graph theory) has been a mathematical discipline for
nearly three centuries, but few technologies have harnessed these theoretical models for
the purpose of data storage and analysis.

 Early on, a handful of companies have truly tapped into the power of graph technology
as the driver of their businesses, including Google, Facebook, LinkedIn and Microsoft as
well as upstarts like Airbnb and Uber. Well-established entities such as NASA, eBay, UBS
and many of their peers use graph technology to improve their customer experiences and
increase their competitiveness.

Today, graph-powered applications are used by more than 75% of the Fortune 500,
including:

• 7 of the world’s top 10 retailers

• 3 of the top 5 aircraft manufacturers

• 8 of the top 10 insurance companies

• All of North America’s top 20 banks

• 8 of the top 10 automakers

• 3 of the world’s top 5 hotels

• 7 of the top 10 telcos

These successes serve as a strong indicator of graph technology’s impact on both
innovation and the bottom line.

 Well-established
entities such as NASA,
eBay, UBS and many
of their peers use
graph technology
to improve their
customer experiences
and increase their
competitiveness.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://en.wikipedia.org/wiki/Graph_theory
https://neo4j.com/case-studies/linkedin-china/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/case-studies/airbnb/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/nasa-critical-data-knowledge-graph/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/case-studies/ebay/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/real-time-data-lineage-ubs/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/nasa-critical-data-knowledge-graph/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/case-studies/ebay/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/real-time-data-lineage-ubs/?ref=pdf-white-paper-buyers-guide

neo4j.com5

The Graph Technology Buyer’s Guide

Collections vs. Connections

SQL & NoSQL Systems Focus on Data Aggregation & Collection
Collection-centric storage designs as implemented by SQL and Not only SQL (NoSQL)
databases are designed to efficiently divide and store data.

In SQL’s case, the normalization of data into a tabular schema aims to minimize storage
of duplicate data objects, types and values. These systems were born during the era of
scarce physical memory and expensive disk-based storage, designed to avoid managing
often-redundant data objects such as physical location addresses for shipping, billing,
homes, offices, destinations, businesses, etc. For example, all of these data objects included
common, redundant data such as a country and its provinces or states, or telephone area
codes and postal codes.

The original relational databases were designed to minimize storage of duplicative data
values because disk space was costly. (Ironically, each normalization incurs a cost in
relationship storage in the form of JOIN tables, which native graph databases have managed
to eliminate through the use of pointers.) The RDBMS design achieved this consolidated,
normalized goal by linking tables of data via foreign keys to their associated records from
other tables. This is why a relational dataset modeled into a graph often shrinks by an order
of magnitude or more, maintaining the full richness of the data without redundant data
storage.

NoSQL systems like document, wide column and key-value data stores carry those concepts
forward (and backward) by simplifying their models in exchange for higher levels of scale and
simplicity. By eschewing data relationships and providing simple programmatic APIs, NoSQL
systems make it easy for developers and administrators to work with simple data in a way
that can easily scale.

A lack of concern about relationships leads to looser data guarantees, plain APIs and
straightforward scaling schemes. Data is easily spread out and just as easily retrieved,
without the need to maintain the integrity of related data that’s written across a distributed
storage or a cluster of machines and without needing to concern itself with the performance
of distributed JOINs across those machines.

These systems take on the “store and retrieve” problem at scale for simple data, and
their architectures reflect this, as does the set of problems they are equipped to address.
However, none of these systems focus on interrelated, contextualized data or how that data
might be traversed to reveal unobvious relationships, as explained below.

 By eschewing data
relationships and
providing simple
programmatic APIs,
NoSQL systems make
it easy for developers
and administrators
to work with simple
data in a way that can
easily scale.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/native-vs-non-native-graph-technology/?ref=pdf-white-paper-buyers-guide

neo4j.com6

The Graph Technology Buyer’s Guide

Graph Systems Focus on Data Connections
By contrast, graph database technologies focus on how data elements are interrelated and
contextualized as connected data.

Connected data is the materialization and harnessing of relationships between data
elements, which is modeled as a property graph.

A property graph is a data model designed to express data connectedness as nodes
connected via relationships to other nodes, where both nodes and relationships can have
properties attached to them (which in turn can be indexed). For example, devices on an
enterprise network might be modeled as nodes, with properties for their attributes (such as
throughput) and relationships pointing to other adjacent devices.

In the graph model, data relationships are persisted so they can be navigated or
traversed along connected paths to gain context. Relationships are both typed and
directional.

The context provided by these data connections is essential to identifying friendships,
making relevant real-time recommendations, attaching adjacent ideas and detecting fraud by
following money trails. Without relationships as first-class data entities, all of these use cases
become extremely difficult to execute.

Property Graphs Are Intentionally Simple
• You can draw property graphs on whiteboards and map that design directly into a

graph database.

• You can change or update a property graph easily, because its agile design eliminates
most of the structural overhead of traditional database schemas.

• You can quickly program property graphs because their query language expresses and
follows relationships.

• You can visualize and navigate property graphs efficiently by following the relationships
on their paths to context.

• You can rapidly determine data context when property graph queries are executed in
hyper-fast native graph platforms built on reliable, scalable database architectures.

 A property graph
is a data model
designed to express
data connectedness
as nodes connected
via relationships to
other nodes, where
both nodes and
relationships can have
properties attached
to them (which in turn
can be indexed).

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com7

The Graph Technology Buyer’s Guide

Benefits of Graph Databases
• Simple and natural data modeling: Graph databases provide flexibility for data

modeling, depending on relationship types. Since the graph model comes with no
inherent rules, graph data stores add as much or as little semantic meaning as the
domain requires. This occurs without any constraints like normalization or restructuring
of the data using denormalization.

• Flexibility for evolving data structures: Graph technology provides flexible schema
evolution. In a constantly changing data environment, you need the option to add or
drop data entities or relationships as well as extend or modify your data model. Graph
databases allow for evolving data structures that match today’s agile development
environments.

• Simultaneous support for real-time updates and queries: A graph data store and
its model allow real-time updates on graph data while supporting queries concurrently.

• Better, faster and more powerful querying and analytics: Graph data stores
provide superior query performance with connected data using native storage and
native indexed data structure.

Connected data in property graphs enables you to illustrate and traverse many relationships
and find context for your next breakthrough application or analysis.

 Connected data in
property graphs
enables you to
illustrate and
traverse many
relationships and
find context for your
next breakthrough
application or
analysis.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com8

The Graph Technology Buyer’s Guide

Part 2:
The Buying Criteria for
Graph Technology

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com9

The Graph Technology Buyer’s Guide

Structure
The structure of this document allows the reader to understand the buying criteria to
consider, given their desired use case. Each vendor you consider should be able to robustly
answer your questions according to these criteria.

Graph DBMS buying criteria is often mischaracterized as being akin to purchasing any
traditional database. To some degree that is true, with shared questions such as:

 r Does it store data safely and redundantly?

 r Does it have security features?

 r Does it have an easy-to-use query language?

 r Does it scale?

 r Is it embeddable?

 r Does it run in the cloud?

 r Does it work with my existing applications?

All of these questions are indeed valid. There are, however, important requirements related
to supporting and persisting data relationships that make graph database management
systems and platforms unique, therefore requiring specific buying criteria. These criteria are
explained below.

Open Source Foundation & Community
The most successful infrastructure software contains a strong foundation of open source
code that provides power and transparency, often catalyzed by a community of users around
that software.

Open source technology helps drive adoption, ensure quality and assist market fit as the
software matures version by version with the feedback – and sometimes contribution – of a
global community. Beyond Oracle, Microsoft SQL Server and a handful of other early RDBMS,
very few proprietary database technologies survive when compared to their open source
counterparts like Postgres, MySQL, MariaDB, MongoDB and many others.

The premise of using open source as a means to validate and move a market forward is no
different in the case of graph databases. Therefore, buyers should consider the size and
enthusiasm of a graph technology’s open source community as a proxy for multiple items,
including the market impact of that technology, the likely availability of skill sets in the market,
and the flexibility of the software to evolve beyond the capabilities and personnel of a single
software vendor.

What to Look for: Open Source Community
There are a number of graph technologies that are born from open source projects. The
most notable is Neo4j, which was the first property graph database released as open source
in 2010. After nearly a decade, Neo4j’s community is thriving with millions of downloads and
hundreds of thousands of deployments.

Apache TinkerPop is another open source graph project. The TinkerPop graph traversal
engine’s v1 release was in 2011, and it became an Apache-incubated project in 2015. Given

 Open source
technology helps
drive adoption,
ensure quality and
assist market fit as
the software matures
version by version
with the feedback
– and sometimes
contribution – of a
global community.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://db-engines.com/en/ranking_osvsc
https://db-engines.com/en/ranking_osvsc
https://neo4j.com/open-source-project/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/open-source-project/?ref=pdf-white-paper-buyers-guide
https://community.neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/product/?ref=pdf-white-paper-buyers-guide

neo4j.com10

The Graph Technology Buyer’s Guide

its ease of integration, flexible storage options and permissive-use license, it has become a
common choice for NoSQL vendors when adding graph interfaces to their products.

There are a number of other proprietary graph vendors as well. However, their ability to
establish market share and adoption is severely limited when compared to the Neo4j and
TinkerPop open source projects.

Independent sites like DB-Engines prove out this market reality. As of the publication of this
guide, Neo4j’s score accounts for roughly half of the total graph market popularity score.
Meanwhile, TinkerPop-based products make up approximately 40 percent of that score. The
remaining 10 percent are divided among over 20 additional vendors.

Native Graph Storage
Native graph storage ensures that relationship information – the entity that connects one
data node to another – is persisted as a primary data element.

Without native graph storage, relationship information may be lost, misconnected or
abandoned, all of which are unique symptoms of graph data corruption. Many non-
native graph solutions allow for (and sometimes create) graph data corruption, which is
unacceptable for mission-critical enterprise applications.

What to Look for: Transposition vs. Persisted Relationships
When considering non-native graph technology, a buyer should ask: Is there a graph-to-
document or graph-to-column transposition step buried in the software?

Document databases often store relationships as special document collections. Columnar
databases may store relationships as column families. Neither is native, thereby increasing
complexity and slowing processing times, especially if a graph traversal query requires
multiple hops where each hop needs to be individually translated from the underlying
system.

What to Look for: Index-Free Adjacency
Native graph storage with index-free adjacency supports high-performance graph traversals
across deep graph datasets.

Index-free adjacency avoids expensive, low-level transpositions that are supported by non-
native graph storage and retrieval architectures. Index-free adjacency creates fixed-size
pointers to and from any node to another; native graph technology is therefore both fast and
predictable in its performance costs.

ACID Compliance
Long considered the “gold standard” for database transactional reliability, ACID (Atomicity,
Consistency, Isolation and Durability) compliance ensures that a DBMS safely and reliably
stores transactional data as it enters and is updated within the system – especially as the
data and system grow.

While some (NoSQL) databases eschew ACID and can get away with doing so for certain use
cases, the impact of non-ACID compliance with graph datasets is grave. Because graphs are
inherently connected, proven risks arise with non-ACID transactions, where parts of a graph
transaction successfully commit while other parts fail, leaving data in a corrupted state.

 Long considered
the “gold standard”
for database
transactional
reliability, ACID
(Atomicity,
Consistency, Isolation
and Durability)
compliance ensures
that a DBMS safely
and reliably stores
transactional data
as it enters and is
updated within the
system – especially as
the data and system
grow.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://db-engines.com/en/
https://db-engines.com/en/ranking/graph+dbms
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/?ref=pdf-white-paper-buyers-guide

neo4j.com11

The Graph Technology Buyer’s Guide

For example, corrupted graph data can result in dangling relationships that point nowhere,
phantom properties, and nodes that can only be reached from one direction. The ripple
effect of these situations is quite staggering when you consider what happens when
subsequent reads against that corrupt data influence new updates or writes, which further
spread corruption because they are based on the original corrupt, untrustable values.
Ultimately, significant portions of the database become unusable.

For non-native graph databases built on top of other data models, ACID compliance can
be equally complex and concerning. For example, key-value stores are optimized for high
throughput and low latency on single-key lookups (reads) and writes. They support ACID
semantics only at a single-key level. As a result, a graph data store that needs transactional
and data consistency capabilities cannot be implemented directly over native key-value
stores efficiently.

What to Look for: Durability
Database systems should be evaluated and rigorously tested to ensure that they lose no data
when introducing a systemic hardware failure, such as a “kill -9” process interruption, power
failure or kernel panic.

It has been observed that some native graph and multi-model database systems are unable
to recover gracefully here, both by losing transactions that the system had previously
accepted and/or failing consistency checks after recovering from the failure itself.

What to Look for: Consistency Checking for Graphs
When you’re evaluating vendors, here are the questions you should consider when it comes
to data consistency and corruption:

 r Does the database offer any level of consistency checking for graphs?

 r What safety measures are available to ensure writes are written correctly?

 r Do these measures work as expected in a clustered, High Availability (HA) environment?

 r Does the database vendor’s documentation contain warnings, such as beware of ghost
vertices or floating or untethered edges?

All of these questions should serve as warnings of data corruption.

 Unlike the ISO/ANSI
SQL that has served
RDBMS users as
the standard query
language for 40 years,
there is not yet an
industry-standard
query language for
graphs.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com12

The Graph Technology Buyer’s Guide

Graph Query Languages
Unlike the ISO/ANSI SQL that has served RDBMS users as the standard query language for 40
years, there is not yet an industry-standard query language for graphs.

Consequently, graph query language support varies widely across products. A number of
graph-specific query languages have therefore been developed. Some of these support only
the vendor’s own product, whereas others – Cypher and Gremlin – support a number of
DBMS implementations as well as third-party graph visualization and integration tools.

A subclass of the single-product languages use their own SQL-like dialects adapted by the
vendor in an appeal to users’ existing experience and comfort with SQL. Such approaches –
while appearing familiar on the surface – tend to elude the desired benefits.

These SQL-like dialects are often supported by only one database vendor, lack a community
of skilled users together with a third-party tooling ecosystem, and also tend to miss out on
the technical benefits of query languages designed from the ground up for the property
graph model.

Below is a review of more detailed considerations, but here is a summary of where most
users end up: nearly all graph database vendors offer either direct Cypher support, direct
Gremlin support or both. All graph databases that support Gremlin can now also run Cypher,
thanks to openCypher’s “Cypher for Gremlin” project, which has been donated to the Apache
Foundation under the official TinkerPop umbrella, making Cypher support part and parcel of
TinkerPop.

Also worth noting is that the vast majority of graph database users (which encompasses
developers as well as projects) are using Cypher. There is an active and concerted effort
inside of the ISO and the openCypher community to create a new standard language
under the International Standards Organization umbrella as a sibling language to SQL. This
language is inspired by and would be highly compatible with Cypher and its own sibling graph
query language derivatives.

What to Look for: Declarative vs. Imperative Languages
Declarative languages such as SQL – as opposed to imperative languages like Java – tend to
be advantageous as database query languages for a variety of reasons.

Declarative query languages are more easily learned, as the query author needs only to
instruct the database about what to retrieve and not be concerned about the low-level
details of how the database should go about obtaining it.

Declarative languages are also easier to write, read and debug for end users than imperative
languages. This declarative approach has been a key factor in SQL’s popularity over the years.
Today, the most popular, fully declarative graph query language is Cypher.

Imperative languages offer fine-grained control over every behavior of the query by
instructing the system where to go as it touches every node, almost like when one learns
hopscotch. The issue with imperative languages is that the developer must be intimately
familiar with the graph schema they are querying in order to tell the system how to execute
each traversal, which increases both the learning curve for the language as well as the
complexity of the code being written.

The most popular imperative graph query language is Gremlin, though Gremlin also
combines some declarative attributes.

 Today, during the
emergence of NoSQL
and graph databases,
it is not as easy to find
trained developers
who know each
vendor’s proprietary
query language.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/cypher-graph-query-language/?ref=pdf-white-paper-buyers-guide
https://www.opencypher.org/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/imperative-vs-declarative-query-languages/?ref=pdf-white-paper-buyers-guide

neo4j.com13

The Graph Technology Buyer’s Guide

Declarative languages require far more work on the part of the database vendor to build
and optimize, as they effectively render what a user is asking for into a set of low-level
imperative commands that the database carries out. TinkerPop is thus relatively easy to port
to any database backend. On the other hand, supporting Cypher requires a sophisticated
combination of parsing, planning and runtime work, as well as database statistics and cost-
based optimization techniques, all of which require substantial effort to write and maintain.

What to Look for: Compiled vs. Interpreted Instructions
Some graph query languages must be compiled into binary packages prior to execution
within the database. While this technique may be advantageous for optimizing the
performance of a single query, it undoubtedly increases debugging complexity and extends
the time it takes to write, build and execute queries.

Compiled queries are also a major obstacle when it comes to ad-hoc querying by end users
and end-user tools. This effectively eliminates the ability to change a query on the fly –
perhaps to just correct a typo – or to modify an ad-hoc query parameter.

What to Look for: Graph Query Language Standardization
The relational database market of the 1980s grew much more rapidly after multiple vendors
adopted ANSI SQL as their standard query language. This made it easier to find and hire
skilled resources for nearly any project and created more application portability across
platforms.

Today, during the emergence of NoSQL and graph databases, it is not as easy to find trained
developers who know each vendor’s proprietary query language. This will remain true until
another standard language takes shape.

Developing a new standard not only requires an abundant user community, but also
cooperation among vendors, large and small. This cooperation has not happened in the
NoSQL space, as the SQL Standards oversight team chose to simply adapt the ANSI SQL
standard to accommodate new NoSQL-style syntaxes and data types.

Graph Query Language (GQL) standards development is underway. This new standard is
emerging both from the usage and adoption preferences of the graph tech user community,
as well as the adoption and implementation of open source language toolkits within the
vendor community.

What to Look for: GQL vs. Gremlin
Apache TinkerPop enjoys popularity across a variety of vendor implementations. Gremlin
is TinkerPop’s query language and is supported by many vendors including Neo4j, who co-
authored Gremlin’s original TinkerPop engine. Gremlin’s drawbacks, however, are explained
above.

Contrast this to the openCypher project with growing support from SAP HANA, Databricks
and the Apache Spark project, Redis, Memgraph, Bitnine and Cambridge Semantics. There is
also a swell of support for GQL, as the ISO W3C (the SQL Standards body) held a discussion
on endorsing both a SQL-compatible, yet independent, Graph Query Language based
on inputs from the Linked Data Benchmark Council (LDBC), Neo4j’s Cypher and Oracle’s
Property Graph Query Language (PGQL).

 The most successful
graph applications
help organizations
innovate more quickly,
generate and optimize
revenue streams,
and improve the
customer experience
by preventing
unexpected
maintenance.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com14

The Graph Technology Buyer’s Guide

Hybrid Transactional-Analytic Platforms
(HTAP)
Database use cases are generally divided into two top-level categories – those that support
online transaction processing (OLTP) applications and those that support analytic activities
(OLAP), including data warehouses, business intelligence, data discovery, data mining, etc.

While graph database use cases can fall into these general buckets of OLTP and OLAP, they
often layer or blend analytic and transactional information in an approach known as Hybrid
Transactional-Analytic Platforms (HTAP).

For example, a graph-powered metadata management application can act as both a
knowledge graph for data lineage as well as a recommendation application. Or, a data
scientist can develop AI instructions using graph analytic algorithms and then deploy those
algorithms to a transactional AI application that makes personalized recommendations to
each user.

OLTP Applications
Common OLTP use cases for graphs include identity and access management, real-time
recommendations, social network publishing, fraud detection, network systems operations,
cybersecurity, Internet of Things (IoT), artificial intelligence, supply chain, institutional
knowledge recall, customer 360, digital transformation and metadata management.

Often, these are combined or layered to feed one another. Moreover, these transactional
applications must integrate a variety of technologies beyond the underlying data
management system. Therefore, the graph technology must support integrations across use
cases, data interfaces, deployment environments, programming languages, user experience
and more.

What to Look for: Verified Use Cases vs. Website Messaging
Ask each supplier for example implementations and references for each of your use cases.

If any vendor is unable to supply solid customer references, then there’s a high likelihood
that the implementations only exist in theory. The greater number of example successes
for your use case, the higher the probability of your own success in implementing a graph
solution.

Be sure to ask any vendor that provides use case examples whether the referenced
company has a separate commercial relationship with the graph provider – for example, as
an investor or business partner.

The most successful graph applications help organizations innovate more quickly, generate
and optimize revenue streams, and improve the customer experience by preventing
unexpected maintenance. Make sure your graph technology vendor knows how and
why their customers and users chose graphs for their application. Beware of vendor
inexperience and “foilware.”

Verified community and customer experience should provide higher degrees of assurance
in your search for the right vendor.

 As the software
industry has evolved,
most IT organizations
have become wise
to the configuration
and execution
games played among
vendors, giving
rise to the term
“benchmarketing.”

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/identity-and-access-management/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/use-cases/social-network/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/cygraph-cybersecurity-situational-awareness/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/whitepapers/internet-of-things-graph-databases/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/case-studies/transparency-one/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/financial-services-neo4j-360-degree-view-customer-experience/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/accelerating-digital-transformation-ca-technologies-neo4j/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/financial-services-neo4j-data-lineage-metadata-management/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/customers/?ref=pdf-white-paper-buyers-guide

neo4j.com15

The Graph Technology Buyer’s Guide

What to Look for: Geospatial Support
Transactional graph applications are frequently designed to describe the interaction
activities among people with a variety of digital and analog objects in the context of their
location, time, space and the digital networks within which they operate.

If these applications, filled with graphs of people, objects, locations, events and networks
sound familiar, then the system within which you store and query this information should
support advanced data types, such as geospatial and temporal types.

What to Look for: Temporal Support
Many graphs have temporal requirements since they contain information about when
activities occurred, and therefore how they are sequenced in the graph.

 r Does the graph system support time formats and calculations?

What to Look for: Full-Text Search & Indexing
Many graph applications parse and search documents and large parcels of text such as
maintenance orders, parts assemblies, research documents and even web pages. In these
cases, full-text search and indexing are critical for optimal performance.

 r Does the graph system support mapping, indexing and searching for specific text
within the graph? How is that performed?

 When data is
imported into a
graph, the data’s
relationships must
be materialized.
Furthermore, due to
the schema-optional
nature of graph
systems, data is easily
changed, added and
removed.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com16

The Graph Technology Buyer’s Guide

Query Traversal Performance Benchmark
Comparisons
Benchmarks are a popular product comparison vehicle, but you should observe graph
benchmark results with a skeptical eye. As the software industry has evolved, most IT
organizations have become wise to the configuration and execution games played among
vendors, giving rise to the term “benchmarketing.”

When evaluating vendor-sponsored benchmarks, look for verifiable and reproducible tests
that include data, documentation, configuration and execution methods as well as results.
Look for a standard toolkit and dataset – for graph applications this is the Linked Data
Benchmark Council’s (LDBC) array of tests.

Look for independent third parties that have performed comparisons – even when working
with the graph vendor. These comparisons are preferred over highly biased, vendor-
developed and staged tests.

What to Look for: Query Traversal Performance Tricks Played by
Vendors
When creating performance benchmarks, vendors often use tricks to improve their product
performance while simultaneously causing their competitors to perform poorly. Here are a
set of key questions to ask while evaluating any vendor benchmark:

 r Does performance deteriorate exponentially when the number of traversal hops
across the graph increases? (This is very likely due to the transposition issues
mentioned above, or whether the queries are run as executables or within a runtime
interpreter.)

 r Does the benchmark compare a pre-compiled binary query against an interpreted
query? Is that fair, or should both systems run pre-compiled queries?

 r Does the vendor fully exercise the system or simply highlight its most favorable tasks
and results? For example, are workloads mixed as both transactional writes and
analytic reads, or is only one type of activity executed?

 r Are caching strategies equal? Are both graphs fully loaded into memory (where they
will be extra fast), or is only one product fully loaded into memory while the other
swaps between cache and disk?

 r Are one-time data loading operations overly emphasized, versus multi-user or multi-
session tests, which better reflect regular usage?

 r Are benchmark sessions multi-user, or are they single sessions that utilize all available
CPU resources to parallelize query execution? How realistic is it that one user will use
the database at a time?

 r More broadly, do the benchmarks consider real-world, mixed read-write workloads?

 r Are the systems configured optimally and fairly: system sizing, memory, tuning config
parameters?

Look out for benchmarks that claim fairness by using database defaults, which are often
extremely minimal in order to support small-scale functional evaluation rather than
performance at scale.

 A graph platform
should include
features for all
of these users,
offering extensions,
apps, libraries,
APIs and SDKs, as
well as integration
with a variety of
complementary
technologies.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
http://ldbcouncil.org/
http://ldbcouncil.org/

neo4j.com17

The Graph Technology Buyer’s Guide

Graph Analytics
Graph analytics are unlike traditional aggregation-based analysis.

Graph analytics tasks search for pathways, clusters, similarities and contextualization. Given
the newness of graph analytic exercises, you should place a higher degree of confidence
in vendors who offer a variety of educational, implementation and integration materials to
assist data scientists and other data analysts.

What to Look For: Publications & Educational Material
 r Has the vendor not only published content about graph systems, but also published
information about how to perform graph analytics exercises using graph algorithms?

 r If not, then how do they teach users how to use any graph algorithm libraries they
might offer?

What to Look for: Robust Library of Graph Algorithms
Graph algorithms help users readily identify patterns, paths, clusters and similarities among
graph data. These algorithms are used to support AI applications and reveal interesting
patterns during analysis. Vendors should offer support for popular graph algorithms,
including documentation explaining their appropriate use and application.

Data Integration & Ingestion
Data ingestion and integration are just as important for graphs as they are for SQL and
NoSQL systems.

When data is imported into a graph, the data’s relationships must be materialized.
Furthermore, due to the schema-optional nature of graph systems, data is easily changed,
added and removed. Vendors will outline their ability to ingest high volumes of data rapidly,
which is primarily useful when a dataset first enters the graph. Enterprises who have
invested in other big data technologies will need integration to their Hadoop installations,
ideally using already-deployed data processing technologies such as Apache Spark.

It also may become necessary for data to be streamed or imported into the graph system
on a regular basis. Therefore, the inclusion or integration with data processing tools such as
Kettle or Kafka (open source) or commercial tools from Informatica, iWay, Trifacta or others
is desirable from any graph technology vendor.

What to Look for: Data Lake Integrations
Data lakes have become commonplace across enterprises. This mega-warehouse strategy
is designed to centralize data storage in order to feed traditional data warehouses, support
a new generation of transactional and analytic applications and ensure consistency of how
data is managed, maintained and used.

Organizations who have invested in data lakes – and especially those who use Apache Spark
as their analytic processing engine – should consider how easily the graph system integrates
with that source data.

 A visual development
environment should
be included with the
database to help
developers write
clean, clear queries
and also understand
what those queries
return.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://medium.com/neo4j/getting-started-with-kettle-and-neo4j-32ff15b991f9
https://medium.com/neo4j/a-new-neo4j-integration-with-apache-kafka-6099c14851d2
https://neo4j.com/developer/neo4j-browser/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/neo4j-browser/?ref=pdf-white-paper-buyers-guide

neo4j.com18

The Graph Technology Buyer’s Guide

Some questions to consider for data lake integrations with graph technology:

 r Can the graph system operate within the Apache Spark ecosystem?

 r Can graphs be materialized from Spark Data Frames?

 r Can graph structures be directly imported into the graph database system?

What to Look for: Data Integration & Ingestion Technologies
Data integration and data streaming capabilities are very desirable add-ons for graph
systems. Without them, the DBA is left with simple comma-separated value (CSV) import
functions, which could be sub-optimal.

Look for libraries, SDKs and data integration adapters to popular data management tools.
Open source tools like Talend and Kettle should be available for a given graph system, while
commercial product support from Informatica, Ab Initio, iWay, Trifacta or Tamr is desirable
for organizations that have made investments in these tools.

What to Look for: CSV Import & High-Speed Ingestion
At a minimum, most products import CSV text files. Any given graph technology vendor
should also support additional functions such as high-speed and bulk ingestion.

More advanced data population strategies include the ability to defer index building and
consistency checking until after all the data is ingested. However, development teams
should be careful not to over-consider the importance of high-speed ingestion. For most
use cases, high-volume ingestion is usually more of a setup exercise when compared to
ongoing incremental updates, which tend to be much smaller than initial data loads.

Graph Platform with Tools & Support for All
Types of Users
Most use cases require more than just a database. Therefore, buyers should also look for
capabilities and features that support the entire software engineering lifecycle as well as a
wide user base that includes developers, data scientists, DBAs, IT operations and business
users.

A graph platform should include features for all of these users, offering extensions, apps,
libraries, APIs and SDKs, as well as integration with a variety of complementary technologies.

 A well-built graph
visualization tool
allows you to explore
the graph in a
variety of ways, such
as filtering nodes
and relationships,
lassoing parts of the
graph, reviewing and
editing properties,
highlighting paths,
coloring nodes
categories and
including graphic
icons.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://www.youtube.com/watch?v=7LHXYKAu9Nk&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=3
https://www.youtube.com/watch?v=7LHXYKAu9Nk&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=3
https://www.youtube.com/watch?v=7LHXYKAu9Nk&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=3

neo4j.com19

The Graph Technology Buyer’s Guide

Developer Tooling
Technical user tools are essential for graph developers.

In this area, the vendor should offer a visual programming environment that allows the
developer to not only write queries, but to also see the graph upon which they are working.

Developers need a variety of drivers and APIs (beyond just JDBC) with which to integrate
application-level functionality. Furthermore, the database should be embeddable within a
larger application as is often necessary in modern deployments.

What to Look for: Developer Launchpad Application
An ideal developer experience is one that assembles all developer tools in one application
wrapper such that the developer always enjoys the same launchpad from which to work
with their graph database system.

Neo4j is the only graph database system to offer the Neo4j Desktop: an integrated
developer launchpad for graph projects. Neo4j Desktop provides access to the Enterprise
Edition of the Neo4j Graph Database along with its accompanying algorithm and procedure
libraries, as well as graph application examples. The Neo4j Desktop is free for development
use.

What to Look for: Visual Development Environment
A visual development environment should be included with the database to help developers
write clean, clear queries and also understand what those queries return.

Features of this environment should include keyword color-coding and auto-completed
values drawn from the database. It should also include a storyboard-like guide that allows
developers to teach and share step-by-step instructions. A visual graph drawing tool should
be included to help visualize the result set.

What to Look for: Application Drivers
Developers choose to write applications in a variety of programming languages, from Java,
Python or JavaScript to newer languages such as Go. The database should offer multiple
language-specific drivers to ease the burden for developers in designing systems that
include graph databases.

Neo4j offers commercial support for Java, JavaScript, .NET, Python and Go, while the Neo4j
community offers drivers for even more languages. TinkerPop also provides a number of
community-supported language integration drivers.

What to Look for: API Support
Programming interfaces are also important for feeding data into the database using
common protocols.

Interfaces such as Java or the database’s native language are desirable, as are interfaces
and exchange formats for other common occurrences. Any graph technology vendor should
also offer support for GraphQL (Facebook’s data exchange format) as a way of interacting
with applications above the database querying, as well as support for SPARQL, the query
language for RDF-based systems (Resource Description Framework), REST and others.

 Traditional RDBMS
systems support the
ability to host and
manage multiple
databases within
an instance of the
software. For graphs,
this is not yet the
case.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/download/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/neo4j-browser/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/java/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/javascript/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/dotnet/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/python/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/go/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/language-guides/?ref=pdf-white-paper-buyers-guide/#neo4j-drivers
https://neo4j.com/developer/java/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/graphql/?ref=pdf-white-paper-buyers-guide
https://en.wikipedia.org/wiki/SPARQL
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/docs/rest-docs/current/?ref=pdf-white-paper-buyers-guide

neo4j.com20

The Graph Technology Buyer’s Guide

 r Does the vendor support GraphQL?

 r Does the vendor support SPARQL?

 r Does the vendor support REST APIs and frameworks?

 r Does the vendor actively support multiple emerging standards such as the
GRANDstack or similar?

What to Look for: Embeddability
Database embeddability is desirable for a number of reasons, including the ability for OEMs
to package the graph database along with application logic, user interfaces, cloud containers
like Kubernetes and more. More embeddability questions to consider include:

 r Can the database be embedded within a surrounding application?

 r How easily can the graph system embed itself in larger applications?

 r Does the vendor support a robust OEM network and/or startup program?

Visualization Capabilities
Graph data visualization tools are extremely helpful in comprehending graph data
behaviors. These environments allow users to quickly see shapes within connected data and
determine where to look further.

What to Look for: Codeless Search, Business User Support
Business users benefit from a Google-like search and query experience, and a graph
visualization environment should therefore support natural language search functions.
In addition, visualization tools should help the user learn the graph as they use the
environment by offering built-in query suggestions and auto-completion.

Business user questions to consider include:

 r Is the graph data visualization tool codeless for non-technical users?

 r Does the visualization tool support natural language search?

 r Does the graph visualization tool offer built-in query suggestions?

 r Is the visualization tool web-based for ease of access?

What to Look for: Graph Exploration
A well-built graph visualization tool allows you to explore the graph in a variety of ways,
such as filtering nodes and relationships, lassoing parts of the graph, reviewing and editing
properties, highlighting paths, coloring nodes categories and including graphic icons.

What to Look for: Linking & Embedding
A vendor’s graph visualization tool should allow users to link to views of the graph via URL or
external application for data illustrations on other mediums. These views should also be fully
embeddable for easy sharing and integration.

 Graph data isn’t
typically “big data”
in the classical
sense, and graph
databases are not
usually swamped with
the size of indexes
and JOIN tables in
the same way as an
RDBMS.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://grandstack.io/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/docs/java-reference/current/tutorials-java-embedded/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/partners/oem-partner/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/startup-program/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/graph-visualization-neo4j/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/bloom/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/bloom/?ref=pdf-white-paper-buyers-guide
https://www.youtube.com/watch?v=9rL8O0lsuDc&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=2
https://www.youtube.com/watch?v=7LHXYKAu9Nk&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=3

neo4j.com21

The Graph Technology Buyer’s Guide

What to Look for: Developer Code Pasting & Viewing
A robust graph visualization tool should supply fully-formatted query information to
developers or other technical users so that they can adjust the first view or perspective
presented to other non-technical users.

What to Look for: Graph Schema Perspectives for Data Security
Any data visualization tool should include advanced security features that exploit the graph’s
ability to show different views of the data from the same graph.

Specifically, the tool should support presenting different views of the data or the structure of
the data (the schema of the graph) to different groups of users. Filters should also have the
option to be based on group-level security permissions.

What to Look for: Printing, Sharing & Storyboarding
Every graph visualization tool should offer multi-user sharing of graph views so that a
storyboard might be created to show multiple steps through a graph dataset. Furthermore,
the visualization tool should be able to print or otherwise present graph content.

Deployment, Scaling & Administration

What to Look for: High Availability
Does the graph database platform offer a highly available solution designed to gracefully
survive one or more system failures? Often, this requires built-in application and data
redundancy. Some systems offer data redundancy upon a single, writable graph, and then
provide scaling for reads by cascading updates to replica systems deployed around the
world.

Other systems offer redundancy of multiple, duplicate writable graphs, which adds fault
tolerances to applications, networks and operations that lie above the storage system. For
these systems, it is important that their strength of consistency be carefully evaluated. For
graphs, consistency is vitally important, and when writing to multiple duplicates, consistency
must be coordinated carefully.

What to Look for: Write Scaling
Scaling graph writes is arguably the most difficult challenge faced by all graph database
vendors.

Current market expectations are that graph systems should horizontally scale for writes as
easily as they might for read optimization. The reality, however, is that creating a horizontally
scalable graph system requires the user to understand and plan their graph schema
carefully. For example, a user would need to design their schema so that the graph could be
partitioned in some form and therefore fit within any hardware configuration.

Once this takes place, the user must then recognize how each partition will be identified and
how queries will be directed to the proper partition. Finally, the system will ultimately need
a means to leap queries from one partition to an adjacent one, which no graph database
product currently supports.

 Database
administration is
greatly improved
with the inclusion of
administrative tools
not only for DBAs, but
also for programmers
and analysts.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://www.youtube.com/watch?v=1JIK339dqL8&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=4
https://www.youtube.com/watch?v=1JIK339dqL8&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=4
https://www.youtube.com/watch?v=GV3WCEsHRYI&list=PL9Hl4pk2FsvWqH11v_WXVNIgb4iHjqHgs&index=1

neo4j.com22

The Graph Technology Buyer’s Guide

Due to every vendor’s inability to easily break apart a graph, write scaling must scale
vertically, requiring beefier hardware or a cloud environment. Such large, vertically scaled
systems can scale writes in the following ways:

 r By offering more CPU-core backed sessions to accommodate concurrent connections

 r By increasing RAM in which to cache most of the graph

 r By providing enough CPU power to minimize transaction cycle times

What to Look for: Multi-Graph Support
Some graph vendors have begun to solve the above-mentioned writing challenge. These
vendors have identified means by which to isolate, view and operate upon one or many
graph clusters.

Vendors are also identifying ways in which to extend application drivers to support directing
queries to different graphs using a multi-graph routing table. While these graphs are distinct,
this is an illustration of the first stage in supporting a partitioned graph solution.

What to Look for: Multi-Database & Multi-Tenancy
Traditional RDBMS systems support the ability to host and manage multiple databases
within an instance of the software. For graphs, this is not yet the case. Nearly all vendors are
single graph per software instance. Be sure to ask graph vendors these questions:

 r What does their product roadmap include for multiple databases?

 r Will their planned system support multiple tenants, hosting multiple databases?

What to Look for: Read Scaling
Read scaling is significantly easier for graphs than scaling writes.

Many graph database vendors support the ability to offer readable replicas of the main
graph. Some systems scale these replicas hierarchically. It is important to understand how
replicas stay consistent with the main writable-core instance to ensure that an application or
client can read their own writes (RYOW).

 Even within the
almost wholly
online world of
data technology,
face-to-face events,
gatherings and
conferences are
just as important
since they establish
and strengthen
relationships among
users, customers,
partners and
employees.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/neo4j-graph-database-3-4-ga-release/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/blog/neo4j-graph-database-3-4-ga-release/?ref=pdf-white-paper-buyers-guide

neo4j.com23

The Graph Technology Buyer’s Guide

What to Look for: Caching Strategies
Caching all or most of a graph in RAM offers a notable performance boost. In-memory
graphs significantly outperform those that are not cached.

Other questions a vendor should be able to answer about their graph-caching strategies
include:

 r If only sections of a graph fit in memory, then what functions does the vendor offer?

 r Can a language driver point queries to pre-cached information?

 r Can the system reinstate or reheat the cache after system restart?

What to Look for: Scaling Data Volumes
Graph data isn’t typically “big data” in the classical sense, and graph databases are not
usually swamped with the size of indexes and JOIN tables in the same way as an RDBMS. In
fact, both JOIN tables and large indexes fall away when moving your data into a native graph
database.

Scaling large volumes of data is accomplished via big data processing technologies such as
Apache Spark for analytic activities or Apache Kafka for data streaming.

Ask vendors about their ability to execute graph queries upon Apache Spark, or whether
they can materialize graphs from Spark DataFrames. Look for mature clustering
technologies that use tools such as the Raft protocol instead of a simpler master-slave
architecture.

What to Look for: Cloud Support
Now more than ever, enterprise organizations are deploying database instances to the
cloud in addition to on-premises. Ask these questions when considering a graph database
vendor who claims to have cloud support:

 r Does the vendor offer both on-premises and cloud-based versions of its software?

 r Does the vendor offer support for multiple cloud vendors beyond Amazon Web
Services, such as Microsoft Azure, Google Cloud Platform or Alibaba Cloud?

 r Are pricing and consumption costs transparent to the customer?

 r Does the cloud offering mirror the vendors’ on-premises functionality?

What to Look for: DBaaS Support
Analysts have predicted that a fully functional Graph Database-as-a-Service will become very
popular in the years to come. Ask vendors these questions in relation to their DBaaS plans:

 r What is the vendor’s plan to offer this type of functionality?

 r What subscription tiers will they offer?

 r Is there a multi-tenant offering allowing a value-added software vendor to host
multiple downstream customers?

 Now more than
ever, enterprise
organizations are
deploying database
instances to the cloud
in addition to on-
premises.

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/developer/apache-spark/?ref=pdf-white-paper-buyers-guide
https://medium.com/neo4j/a-new-neo4j-integration-with-apache-kafka-6099c14851d2
https://neo4j.com/docs/operations-manual/current/clustering/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/docs/operations-manual/current/clustering/?ref=pdf-white-paper-buyers-guide

neo4j.com24

The Graph Technology Buyer’s Guide

What to Look for: Container Support & Management
Using containers benefits the organization in multiple ways, including simplified
configurations, easier upgrade transitions and scaled replicas.

 r What container-based operating environment is supported by the graph system –
Docker, Kubernetes or others?

 r Is this a common deployment model for the vendor?

What to Look for: Security
Database integrity and security are extremely important in enterprise data management
systems. Ask vendors about these most common database security features and
integrations:

 r How does the environment secure users’ authentication and authorization rights?

 r Does the system integrate with popular directories such as LDAP or Active Directory?

 r Are security groups supported?

 r Is Kerberos supported?

 r Are client-server traffic and server-to-server traffic encrypted inside of the cluster?

 r Is event security logging supported and can administrators disable and re-enable
users?

 r Is security transparent to the developer, or must the developer themselves manage
security within the applications they build?

 r Is the data encrypted on disk? (This is often done at the operating system and file
system level.)

 r Is the data encrypted in transit in server-to-server activities, in administrative functions
and to users’ browsers?

What to Look for: Database Administration
Database administration is greatly improved with the inclusion of administrative tools not
only for DBAs, but also for programmers and analysts.

 r Does the system offer the ability to check logging activity or query executions?

 r Can users terminate runaway queries?

 r Can users view query execution plans?

 r Can administrators review usage statistics that may be used for billing or departmental
chargeback?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/docs/operations-manual/3.5/authentication-authorization/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/download/neo4j-addon-kerberos/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/docs/operations-manual/current/monitoring/?ref=pdf-white-paper-buyers-guide

neo4j.com25

The Graph Technology Buyer’s Guide

Business Model, Focus & Staying Power
Many vendors offer graph extensions and add-ons, which may not provide the optimal
graph experience. They may also unintentionally introduce corruptions, as detailed in the
earlier section on native graph storage.

 r To what degree is the vendor focused specifically on graph support?

 r What level of operations and activity are dedicated to graph systems?

Native graph systems and vendors have and will dedicate significantly more resources to the
success of graphs than multi-model vendors, whose attention will be distracted by the other
database models they claim to support.

What to Look for: Partnerships
Ask who the vendor considers to be their key partners in the market. Partnerships should
include cloud vendors, consulting and implementation providers, software OEMs, value-
added resellers, territorial resellers and education centers.

 r Does the vendor have a wide variety of partnerships throughout both business and
technology landscapes?

 r How closely does the vendor manage and work with their partners? Are they partners
in name only?

What to Look for: Ecosystem
You should also consider a vendor’s customer and user ecosystem. Questions that you
should ask a vendor include:

 r How large, vocal and active is the vendor’s ecosystem?

 r What are their most frequent questions, issues and ideas?

 r Where do they share ideas and information – a community forum, news group or
developer website?

What to Look for: Events & Conferences
Even within the almost wholly online world of data technology, face-to-face events,
gatherings and conferences are just as important since they establish and strengthen
relationships among users, customers, partners and employees. Questions you should ask a
vendor include:

 r What events does the vendor host to develop its community?

 r How many regular meetups does it participate in?

 r What breadth of geography does a vendor cover in their events and in-person
outreach?

 r Does the vendor hold a regular conference dedicated to graph technology?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://community.neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com26

The Graph Technology Buyer’s Guide

What to Look for: Customer Feedback
Any vendor can claim to have top-name customers who are happy with their product, but
not every vendor can back up those claims with solid references and case studies. Questions
you should ask a graph technology vendor include:

 r Who are the vendor’s referenceable customers?

 r Do they have a public listing of customers available on their website?

 r Will the vendor’s sales team allow you to speak to some of their current customers?

Beware of signs that may indicate a conflict of interest, such as a corporate investor also
posing as a customer reference.

What to Look for: Licensing Model
Not all customers’ software needs are the same. A mature vendor offers a variety of
licensing models for their graph database software to match the needs of different
customer requirements. Questions that you should ask a vendor include:

 r Does the vendor offer a variety of license models to suit the buyer’s preferred
deployment and feature combinations?

 r Does the vendor publish their price list?

What to Look for: Mature Technology vs. Technology Past its
Prime
Database analyst Curt Monash famously observed that “the first rule of databases is that
it takes at least five to seven years to build a good, stable one. The second rule of
databases is that there is no exception to rule number 1.” This maturity requirement rule is
intended to reinforce the importance of most of the earlier requirements.

Likewise, look out for aging technology that is losing its place in the market. This is often
referred to as the “Goldilocks effect,” whereby mature technologies grow stale, paving
the way for newer ones. The aging technology is then slowly put to pasture as a cash
cow or retrofitted with bolt-on updates that simply add features with little regard to their
effectiveness. The result is a Swiss Army Knife – a tool that does a little of everything but
none of it well.

This phenomenon is currently happening in the multi-model database space, especially
for graphs. Graph add-ons are becoming the saw in a Swiss Army Knife – you can’t build a
robust house with it.

What to Look for: Staying Power & Customer Support to Mini-
mize Technology Risk
The staying power requirement acts as a reminder that software must be maintained and
enhanced, or else it will atrophy and cease to keep pace. Beware of small software teams
or teams of consultants charged with writing and maintaining the software. Additionally, be
cautious of companies nested inside of companies serving as embedded subsidiaries of a
conglomerate.

In addition, a mature graph technology vendor should have the resources necessary
to support your graph database deployment should any issue or problems arise. No
technology is ever deployed perfectly (no matter whether the vendor or the buyer are at

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/customers/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/licensing/?ref=pdf-white-paper-buyers-guide

neo4j.com27

The Graph Technology Buyer’s Guide

fault), but given the newness of the graph paradigm, a vendor must have a dedicated team
of support engineers who can help with your critical issues or questions as they arise. This
team should be geographically spread out and available for emergency support around the
clock.

Below are questions to ask vendors:

 r Is the vendor well-backed financially?

 r Does the vendor operate as a fiscally responsible business?

 r Is the vendor’s product team properly staffed and supported?

 r Does the vendor have a team of professional support engineers to help with critical
issues around the globe and around the clock?

Conclusion
Making an informed buying decision for graph technology isn’t always easy.

Because the graph paradigm is still such a new way of working with data, purchasing teams
are often held back by RDBMS norms when considering how to vet a graph database
vendor. But as has been shown above, factors such as data consistency, performance,
scalability and other important characteristics all have different applications when it comes
to graph databases versus their relational counterparts.

As the graph technology market continues to grow and mature, purchasing decisions may
become more clear as vendors coalesce around shared standards (such as query languages,
data formats, etc.). But until then, we hope that this buyer’s guide has been helpful in
clarifying which factors are most important when considering a graph database product –
and which factors might just be marketing fluff with no substance behind them.

For your convenience, we’ve included a blank checklist in Appendix A that lists all of the
factors outlined in the sections above.

If you’d like to talk to a graph expert about the advantages of the Neo4j Graph Platform,
please contact us today.

 As the graph
technology market
continues to grow and
mature, purchasing
decisions may
become more clear
as vendors coalesce
around shared
standards (such as
query languages, data
formats, etc.).

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://neo4j.com/contact-us/?ref=pdf-white-paper-buyers-guide

neo4j.com28

The Graph Technology Buyer’s Guide

This Appendix includes a blank checklist for the reader in order to independently evaluate and compare graph database choices.

Appendix A

The Buying Criteria for Graph Technology

Open Source Foundation & Community

 r Is the graph database built on an open source foundation?

 r Does the graph database vendor have an active open source community?

Native Graph Storage

 r Transposition vs. Persisted Relationships

 r Is the offering a native or non-native graph database?

 r Is there a graph-to-document or graph-to-column transposition step buried in the software?

 r Index-Free Adjacency

 r Does the graph database support index-free adjacency for high-performance graph traversals across deep graph datasets?

ACID Compliance

 r Durability

 r Is the graph database systems rigorously tested for data durability?

 r Does the graph database lose data during systemic hardware failures?

 r Consistency Checks

 r Does the database offer any level of consistency checking for graphs?

 r What safety measures are available to ensure writes are written correctly?

 r Do these measures work as expected in a clustered, High Availability (HA) environment?

 r Does the database vendor’s documentation contain warnings, such as beware of ghost vertices or floating or untethered
edges?

Graph Query Languages

 r Declarative vs. Imperative Query Language

 r Does the graph database system use a declarative query language, imperative query language or a mixture of both?

 r Compiled vs. Interpreted Instructions

 r Are queries compiled into binary packages prior to execution within the database (optimization for a single query)?

 r Or, are queries interpreted by the database in a way that allows for ad-hoc querying and changes on the fly (optimization for
user agility)?

 r Graph Query Language Standardization

 r Is the database vendor part of the ISO W3C standardization movement around Graph Query Language (GQL)?

 r Does the vendor have plans to be compatible with GQL in the future?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com29

The Graph Technology Buyer’s Guide

Hybrid Transactional-Analytic Platforms (HTAP)

 r OLTP Applications

 r Does the graph database vendor have verified example implementations and customer references for a variety of OLTP use
cases?

 r Does the graph database support geospatial data types?

 r Does the graph system support temporal formats and calculations?

 r Does the graph system support mapping, indexing and searching for specific text within the graph? (full-text search and
indexing)

 r Query Traversal Performance Benchmark Comparisons

 r If the vendor has published a benchmark comparison, does it provide verifiable and reproducible tests that include data,
documentation, configuration and execution methods as well as results?

 r Did the vendor use the Linked Data Benchmark Council (LDBC) array of tests?

 r Did the vendor work with independent third parties that have performed other vendor-neutral comparisons?

 r Does database performance deteriorate exponentially when the number of traversal hops across the graph increases?

 r Does the benchmark compare a pre-compiled binary query against an interpreted query?

 r Does the vendor fully exercise the system or simply highlight its most favorable tasks and results?

 r For example, are workloads mixed as both transactional writes and analytic reads, or is only one type of activity
executed?

 r Are caching strategies equal?

 r For example, are both graphs fully loaded into memory, or is only one product fully loaded into memory while the other
swaps between cache and disk?

 r Are one-time data loading operations overly emphasized – versus multi-user or multi-session tests – which better reflect
regular usage?

 r Are benchmark sessions multi-user, or are they single sessions that utilize all available CPU resources to parallelize query
execution?

 r Does the benchmark consider real-world, mixed read-write workloads?

 r Are the systems configured optimally and fairly along criteria such as system sizing, memory and/or tuning config
parameters?

 r Does the benchmark only use database defaults, rather than being optimized for performance at scale?

 r Graph Analytics (OLAP Applications)

 r Has the vendor published information about how to perform graph analytics exercises using graph algorithms?

 r Does the vendor offer support for popular graph algorithms?

 r Does the vendor include documentation explaining the appropriate use and application of various graph algorithms?

 r Data Integration & Ingestion

 r Does the graph system operate within the Apache Spark ecosystem?

 r Can graphs be materialized from Spark DataFrames?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com30

The Graph Technology Buyer’s Guide

 r Can graph structures be directly imported into the graph database system?

 r Can graph algorithms be run against data in Apache Spark?

 r Does the vendor offer libraries, SDKs and data integration adapters to popular data management tools?

 r Open source tools: Talend and Kettle

 r Commercial tools: Informatica, Ab Initio, iWay, Trifacta and Tamr

 r Does the graph database support CSV data import?

 r Does the graph database offer high-speed and bulk data ingestion?

 r Does the graph solution include the ability to defer index building and consistency checking until after the data is ingested?

Graph Platform with Tools & Support for All Types of Users

 r Developer Tooling

 r Does the platform include a launchpad application wrapper for all developer tools related to the graph database system?

 r Does the platform offer a visual development environment to help developers write clean, clear queries and understand
what those queries return?

 r Does the visual development tool include keyword color-coding and auto-completed values drawn from the database?

 r Does the platform offer commercial support for multiple language drivers for the most popular programming languages?

 r Does the vendor’s wider user community offer drivers for other popular programming languages?

 r Does the graph platform offer API support for Java or the database’s native language?

 r Does the platform include support for GraphQL?

 r Does the platform support integration with SPARQL?

 r Does the platform support REST APIs and frameworks?

 r Does the vendor actively support multiple emerging standards such as the GRANDstack or similar?

 r Can the database be embedded within a surrounding application?

 r How easily can the graph system embed itself in larger applications?

 r Does the vendor support a robust OEM network and/or startup program?

 r Data Visualization Capabilities

 r Does the platform include a native graph data visualization tool?

 r Is the graph data visualization tool codeless for non-technical users?

 r Does the visualization tool support natural language search?

 r Does the graph visualization tool offer built-in query suggestions?

 r Is the visualization tool web-based for ease of access?

 r Does the visualization tool allow non-technical users to easily navigate and explore a given graph dataset?

 r Does the graph visualization tool allow users to link to (or embed) views of the graph?

 r Does the visualization tool let technical users execute Cypher queries or adjust perspectives for other non-technical users?

 r Does the data visualization tool include advanced security features such as user- or group-level viewing permissions?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com31

The Graph Technology Buyer’s Guide

 r Does the visualization tool offer multi-user sharing of graph views, storyboarding, printing or other presentation methods?

 r Deployment, Scaling & Administration

 r Does the graph database platform offer a highly available solution designed to gracefully survive one or more system
failures?

 r Does the graph platform vertically scale for your expected write load?

 r Does the graph platform include multi-graph support for both writes and reads?

 r Are multi-database features included in the vendor’s product roadmap?

 r Will the vendor’s planned system support multiple tenants, hosting multiple databases?

 r Does the graph platform support robust read scaling?

 r Does the graph database offer readable replicas of the main graph?

 r How do replicas stay consistent with the main writable-core instance to ensure that an application or client can read their
own writes (RYOW)?

 r What are the vendor’s graph-caching strategies?

 r If only sections of a graph fit in memory, then what functions does the vendor offer?

 r Can a language driver point queries to pre-cached information?

 r Can the system reinstate or reheat the cache after system restart?

 r Can the graph platform execute graph queries upon Apache Spark?

 r Can the graph platform materialize graphs from Spark DataFrames?

 r Does the graph platform utilize mature clustering technologies such as the Raft protocol, or does it rely on a simpler master-
slave architecture?

 r Does the vendor offer both on-premises and cloud-based versions of its software?

 r Does the vendor offer support for multiple cloud vendors beyond Amazon Web Services, such as Microsoft Azure, Google
Cloud Platform or Alibaba Cloud?

 r Are pricing and consumption costs transparent to the customer?

 r Does the cloud offering mirror the vendors’ on-premises functionality?

 r Does the vendor plan to offer a Graph Database-as-a-Service (DBaaS) in the future?

 r What is the vendor’s plan to offer this type of functionality?

 r What subscription tiers will they offer?

 r Is there a multi-tenant offering allowing a value-added software vendor to host multiple downstream customers?

 r What container-based operating environment is supported by the graph system: Docker, Kubernetes or others?

 r Is this a common deployment model for the vendor?

 r What are the graph vendor’s most common database security features and integrations?

 r How does the environment secure users’ authentication and authorization rights?

 r Does the system integrate with popular directories such as LDAP or Active Directory?

 r Are security groups supported?

 r Is Kerberos supported?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

neo4j.com32

The Graph Technology Buyer’s Guide

 r Are client-server traffic and server-to-server traffic encrypted inside of the cluster?

 r Is event security logging supported?

 r Can administrators disable and re-enable users?

 r Is security transparent to the developer, or must the developer themselves manage security within the applications they
build?

 r Is the data encrypted on disk?

 r Is the data encrypted in transit in server-to-server activities, in administrative functions and to users’ browsers?

 r What database administrative tools are included in the graph platform for DBAs, programmers and analysts?

 r Does the system offer the ability to check logging activity or query executions?

 r Can users terminate runaway queries?

 r Can users view query execution plans?

 r Can administrators review usage statistics that may be used for billing or departmental chargeback?

Business Model, Focus & Staying Power

 r To what degree is the vendor focused specifically on graph support?

 r What level of operations and activity are dedicated to graph systems?

 r Who are the vendor’s key partners in the market?

 r Does the vendor have a wide variety of partnerships throughout both business and technology landscapes?

 r Cloud vendors?

 r Consulting and implementation providers?

 r Software OEMs?

 r Value-added resellers?

 r Territorial resellers?

 r Training and education centers?

 r How closely does the vendor manage and work with their partners?

 r Are they partners in name only?

 r What is the vendor’s customer and user ecosystem like?

 r How large, vocal and active is the vendor’s ecosystem?

 r What are their most frequent questions, issues and ideas?

 r Where do they share ideas and information – a community forum, news group or developer website?

 r What sorts of face-to-face events and conferences does the vendor participate in?

 r What events does the vendor host to develop its community?

 r How many regular meetups does it participate in?

 r What breadth of geography does a vendor cover in their events and in-person outreach?

 r Does the vendor hold a regular conference dedicated to graph technology?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide

Neo4j is the leading graph database platform that drives innovation and competitive advantage at Airbus, Comcast,
eBay, NASA, UBS, Walmart and more. Hundreds of thousands of community deployments and more than 300
customers harness connected data with Neo4j to reveal how people, processes, locations and systems are
interrelated.

Using this relationships-first approach, applications built using Neo4j tackle connected data challenges including
artificial intelligence, fraud detection, real-time recommendations and master data. Find out more at Neo4j.com.

© 2019 Neo4j. All rights reserved. Front cover image: Anna Sullivan on Unsplash. neo4j.com

The Graph Technology Buyer’s Guide

Questions about Neo4j?

Contact us around the globe:
info@neo4j.com
neo4j.com/contact-us

 r Who are the vendor’s reference customers?

 r Do they have a listing of public customers available on their website?

 r Will the vendor’s sales team allow you to speak to some of their current customers?

 r Do any of the vendor’s reference customers hold a conflict of interest, such as also being a corporate investor?

 r What is the vendor’s licensing model for their graph database software?

 r Does the vendor offer a variety of license models to suit the buyer’s preferred deployment and feature combinations?

 r Does the vendor publish their price list?

 r How long has the vendor been working on their graph database product?

 r Does is meet the Monash Rule of 5-7 years of minimum development for a stable database product?

 r Are the graph capabilities merely an add-on of an older, legacy product?

 r Is the graph technology vendor have the business staying power to build, update and support the product for years to come?

 r Is the vendor well-backed financially?

 r Does the vendor operate as a fiscally responsible business?

 r Is the vendor’s product team properly staffed and supported?

 r Does the vendor have a team of professional support engineers to help with critical issues around the globe and around
the clock?

https://neo4j.com/?ref=pdf-white-paper-buyers-guide
https://unsplash.com/photos/YfWwcpKfNFw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@aesullivan2010?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://neo4j.com/?ref=pdf-white-paper-buyers-guide
mailto:info%40neo4j.com?subject=
https://neo4j.com/contact-us/?ref=pdf-white-paper-buyers-guide

