
	

SACCOS, CO-OPERATIVES, BANKS,
CREDIT UNIONS, DIGITAL PLATFORMS
	

MIFOS X SOFTWARE PLATFORM
TECHNICAL OVERVIEW

	

	

	 2

INTRODUCTION

Mifos X Software Platform (simply “the Platform”) is built around a multitenant, service
oriented, and tiered architecture, and can be deployed in a SaaS[1] (Software as a
Service) model or on-premises.

The foundation forms a robust but flexible data model which is ready-made for
extensions and customizations. An API provides access to all basic functions grouped in
modules.

Because the Platform needs to be accessible to users at remote locations, a browser-
based solution was essential.

Java was selected as a suitable high level language allowing the rapid customization of
code required for each individual circumstance yet has a large number of powerful
libraries available.

MIFOS X FINANCIAL SERVICE ENGINE

The Mifos X Financial Service Engine (simply “the Engine”) is a scalable and extensible
framework written in Java, and licensed under the Mozilla Public License 2.0[2].

	

	 3

The main design principle of the Engine is CQRS[3] (Command Query Respon- sibility
Segregation), a pattern that separates commands and queries into different models
and services. This approach has multiple benefits: 1) State changes (commands) are
persisted, providing an audit of all changes, 2) fine grained control and extension of
state changes, and 3) scalability based on consumer behavior and real system load.

Based on a tiered architecture the Engine provides multiple layers to separate concerns
and allow reusability.

API LAYER

The API Layer is built entirely as a RESTful[4] Webservice, using JSON[5] to transmit data, and
utilizes standard HTTP Methods for interactions. The main components of this layer are:

• Resources: Every module is exposed via an URI[5] (Unique Resource Identifier).

• Access Control: Early exit if a consumer lacks authorization for a queried Resource.

• Data marshaling: Any data transmitted to and from the API is de-/serialized using
JSON.

The API is exposed via HTTPS to encrypt all data and secure the communication.
OAuth2 is used for authorization.

Stateless by nature the API Layer can be scaled based on the actual load and even
used in high availability scenarios.

SERVICE LAYER

	

	 4

The Service Layer provides module specific business logic and rules, role based access
control[7] and a xBRL[8] compliant reporting engine. Transaction awareness and data
validity is encapsulated, and extension points are available to enhance built-in
workflows.

Cross concerns like Security or Transactions are part of the core framework and
provided via AOP[9] (Aspect Oriented Programming).

The Service Layer has horizontal and vertical layers.

Services, command, and event handlers form horizontal layers; functional modules form
vertical layers.

The top level modules are shown in the diagram.

DATA LAYER

The Data Layer provides module specific access to data stores. Data integrity is
reached by using the ACID[10] principal and well defined data relations. Write and
read operations are encapsulated in different repositories to define a clean
responsibility separation.

The Data Layer uses two cache strategies to cache data efficiently; database and 2nd
level caching.

• Database caching stores records on the database level and is useful for reporting,
batch jobs, and low level SQL queries.

• 2nd Level caching stores data objects on the application level and keeps database
turnarounds on a very low level allowing fast in-memory access of frequent data.

	

	

	 5

ARCHITECTURE

The Engine’s architecture was designed with a focus on modern, scalable and
extensible technologies ready to run in the cloud. All components where selected
based on their maturity, proven reliability and cost efficiency.

It is our goal to provide a software that is deployable with effectively no cost that can
grow with the customer need over time using well known best practices and support
from a wide range of communities.

The basic Mifos X Financial Service Engine architecture is as follows:

Resource Component Comment

Operating System Linux , Windows, Mac OS
Amazon AWS image and Debian

package available

Runtime Java 7.x

Application Server Tomcat 7.x
Embedded Tomcat for development

environments

Database MySQL 5.x
Embedded MariaDB for

development environments

Application Framework Spring Framework 4.x

Persistence Framework Hibernate 4.x

Reporting Engine
Pentaho Reporting Engine

3.x

Test Framework

JUnit 4.x

Mockito 1.x

REST-assured 2.x

	

	 6

MIFOS X COMMUNITY APP

Mifos X Community App (simply “the Community App”) is a browser based Single Page
Application[11] (SPA) built entirely with HTML, JavaScript and CSS. Resources are loaded
dynamically and added to the page as necessary.

All user interactions, workflows, and application logic is taking place in the browser and
does not create load on the Engine. Ajax[12] is used to send data to and receive data
from the Engine asynchronous, and bidirectional model binding update views
automatically.

Based on AngularJS the Community App is built on the MVC[13] (Model-View-Controller)
pattern and uses templates to render dynamic content. To provide a responsive and
modern look and feel Bootstrap is part of the application stack.

The basic Mifos X Community App components are as follows:

Resource Component

Application Framework AngularJS 1.x

Dependency Management Bower 1.x

Module Management RequireJS 2.x

Chart Library D3 3.x

Look and Feel Bootstrap 3.x

Test Framework Jasmine 1.x

	

	

	 7

REFERENCES

1. http://en.wikipedia.org/wiki/Software_as_a_service

2. https://www.mozilla.org/MPL/2.0/

3. http://martinfowler.com/bliki/CQRS.html

4. http://en.wikipedia.org/wiki/Representational_state_transfer

5. http://json.org/

6. http://en.wikipedia.org/wiki/Uniform_resource_identifier

7. http://en.wikipedia.org/wiki/Role-based_access_control

8. https://www.xbrl.org/

9. http://en.wikipedia.org/wiki/Aspect-oriented_programming

10. http://en.wikipedia.org/wiki/ACID

11. http://en.wikipedia.org/wiki/Single-page_application

12. http://en.wikipedia.org/wiki/Ajax_(programming)

13. http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

DISCLAIMER
Mifos Initiative is approved by the Internal Revenue Service as a 501 (C) (3) tax-exempt organization, and all donations
are tax deductible to the extent provided by law. The Mifos Initiative's Federal Identification Number (EIN) is 45-3613178.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/4.0/.

