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MML applies:

High-throughput quantum chemical
modelling
State-of-the-art electron microscopy

Artificial Intelligence (Al) heuristics

to the research and development of:

Drug design

Immune Interventions

pivoting on:

Big Data

Big infrastructures: High Performance
Computing (HPC)

Big Collaborations (HPC Vendors)



m ml Yes! : opportunity to develop of disruptive decision-support for drug design:

are you Quantum-ready?
2 Classical molecular modelling

|
Force fields :
- Ad hoc API/excipient interactions possible :
- Generalized APl/excipient interactions not possible: |
Thermodynamics - kinetics(API T,, ASD density, APS) :

[
!
!
!
!
!
!
!

High-performance Computing (HPC)

Quantum-ready

Quantum chemical modelling + Spectroscopy

- Bond breaking/formation - Training of Reactive potentials
- Exact thermodynamics/kinetics - Reactive trajectories (RMC, QMD)
- Direct comparison to spectroscopical properties - A priori applicable to any API/excipient combination

Artificial Intelligence

Quantum Chemistry Drug design
- Exchange/Correlation parameters! - Unprocessed API/excipient: interactions (QMC/QMD database)
- Reactive potential calibration - Unprocessed API/excipient: properties (APl Tg, ASD density)

- Unprocessed APl/excipient: APS trends

Quantum Computing




mml X NanoMEGAS Imaging structures in native liquid

Advanced Tools for electron diffraction Liquid Cells (LC) in TEM allow to do image , electron
diffraction and EDS analysis of samples in liquid

' Precession Diffraction Solutions
Ouientation bnuging

Powerful Microscopy solutions
for the Pharmaceutical Industry

Electron Microscopy imaging
& Electron Diffraction

LEC spacer

fox-frLs 200 nm to J um

SPACLI OO

[Top) Poseidon Liquid cell halder (image courtewy Protochips Ing) LC-TEM schematcs (bottom) showing native liguid solution
contained between two amorphous SN thin kiyers (50 nm). Uguid can be sealed and imaged in TEM

Case study : Chemical reaction pathway in liquid

po g 0 Dg go e Crystallization mechanism of
%E" ‘Do ’ﬂ \ perylene diimide has been €D | Alignments NanoMegas | [ v
?r.ﬁﬂ wtial tarly fvolution of arder Studied by CWO‘TEM |

dunsification ordering and marphology NanoMEGAS

MNanoMEGAS
MNanoMEGAS
= ————

TEM zerver connected to flucam.

Patented holder

Schematic representation  of crystailization pathway of perlylene dimide (left) three main stages of
continuous order development are depicted (Coutesy Dr, Tsarfati Weizmann Inst Scence, Israel)

Sczan control
Crystallization pathway forystal nucleation) is
different (regarding size/shape of coystals) in
standard conditions compared with one at
LC-TEM |, where crystallization emerges aftes
13h

Flucam contro

fole NanoMEGAS TEM button!

W5l

Crystal growth experiment of perylene diimide with LC-TEM at different time frames

> > 190 installations worldwide
> > 850 articles in 15 years

NanoMEGAS was found in 2004, Brussels , Belgium and provides advanced electron diffraction (hardware/software) solutions to TEM microscopes worldwide
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B Microsoft
B Azure

Place Your Bets On Azure Cloud!
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flagship initiative

Quantum Immunology

Y

we address how guantum mechanics ?;& be applied
the therapy of infectious diseases, immune disorders,
neurological conditions and aging ‘k '

R




drug discovery

Organic polymorphs =+ Ny

o

we apply inverse modelling, Electron Energy Loss
Spectroscopy (EELS) DFT-TD first-princ?es to detect

new pharmaceutical polymorphs

o W




pharmaceutical phase quantification

Pair Distribution Function {

a combination of state-of-the-art elec

spectroscopy and High-Perform
Computing enabling the quantif
phases and the detection of soli
miscibility and stability in phar*‘é-f“;_
compounds via use of pair correla




Chemical reactivity (e.g. APl degradation, mesoscale dynamics)

In an initial trial of the applicability of this method, we screened the chemical behavior of a molecular liquid. The system
was known to be stable at room temperature, exhibiting a seemingly autocatalytic decomposition, commencing at high
temperatures, accompanied by pressure buildup and in the absence of detectable chemical etching. Among other physical
properties provided, the system’s mass density at room temperature was known. On the basis of the results comprising 500
Monte Carlo frames each, we were successful in predicting the system’s density (not shown) and chemical degradation as a
function of increasing temperature while at the same time accounting for reaction products formed. All results were in full

accordance with experimental data.

mml

Room temperature (RT) ~2 X RT Intermediate temperature High temperature

no reactivity limited reactivity decomposition onset complete decomposition

Click to watch yideo Click to watch video Click to watch video Click to watch video

Average of CompoundNo & Converged -7
Average of Compoundilo
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mml Prediction of ASD physical stability

* APl solubility limit (-> APl recrystallization time)

* Unattended + high-throughput

* Directly comparable to ASD stress tests

e Purely ab initio -> No semi/empirical correlations/term fitting required
* Avoid modelling the API crystalline phase (polymorphism)

Aim: Pre-formulation screening tool for optimal excipient selection

Molecularly dispersed , | b Ty WY
drug in the polymer |
matrix (desirable)

Contains amorphous
drug-rich domains



mml First-principles’ prediction of ASD physical stability

Background + motivation
 PXRD-amorphous # TEM-amorphous
e TEM electron diffraction of purely amorphous (am) ASD sites
flags a correlation of API SL vs. am ASD structure

F(Q)

AP| load (wt% in dry ASD)



mml

First-principles’ prediction of ASD physical stability
Background + motivation

 PXRD-amorphous # TEM-amorphous
 TEM electron diffraction of purely amorphous (am) ASD sites
flags a correlation of API SL vs. am ASD structure

N

ASD am structure
Molecular Modelling energ. + kin.
(under the effect of thermal motion)

AP| load (wt% in dry ASD)



mml

API Excipient

A

Thermal motion

API M Excipient

DFT relaxation DFT relaxation

_> . .
Energy function | = | Energy function

parameters parameters

ASD p, SRO, Tg, HB

Molecular Modelling:
creating simulation supercells & energy functions

pharmaceutical phase quantification

Pair Distribution Function (PDF)

a combination of state-of-the-art: electmll i
spectroscopy and High-Performance [ 0.00
Computing enabling the quantification Gf S8
phases and the detection of solid-state =8

miscibility and stability in pharmaceutical i
compounds via use of pair correlation ful ;ﬂ n

Period Boundary
Conditions (PBC)

Simulation
supercell: Min.
size physically

relevant?

P
Supercell ASD thermal motion ->
Thermal motion Issues to be energetics + kinetics
(force field) addressed
parameters

e

ASD density correct ? <
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Results: ASD #1

40 < SL <45 wth API

APl load (wt% in dry ASD)

APl load (arb. units)
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Results: ASD #2

17 <SL< 20 wt% API

API load (wt% in dry ASD)
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Results: ASD #3

Contents lists available at ScienceDirect

European Journal of Pharmaceutics and Biopharmaceutics

journal homepage: www.elsevier.com/locate/ejpb

Research paper
Physical stability of API/polymer-blend amorphous solid dispersions )

Kristin Lehmkemper™®, Samuel O. Kyeremateng™*, Mareike Bartels™', Matthias Degenhardt”,
Gabriele Sadowski™"

APl = Naproxen (NAP)
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mml Results: ASD #4

Contents lists available at ScienceDirect

European Journal of Pharmaceutics and Biopharmaceutics

ELSEVIER journal homepage: www.elsoviar.com/locate/s|pb r=p=
Research paper
Physical stability of API/polymer-blend amorphous solid dispersions )

e
Kristin Lehmkemper™”, Samuel O. Kyeremateng™", Mareike Bartels™', Matthias Degenhardt”, Lo

Gabriele Sadowski""

PVPVAG64/HPMCAS Months of storage
(wt %/wt %) at 25 °C/0% RH
0-1 | 13 | 36

AP| = Acetaminophen (APAP)

50/50

30 < SL <40 wt% API

[
= W o d O
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1 1
w
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— I\\
i | 344
! \ 3
0 2 4

APl load (arb. units)
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API SL (wt% in dry ASD)
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Results: ActiveRank, aggregate behavior

M Experimental B ActiveRank1
M ActiveRank2 ActiveRank3

W ActiveRank average

0.95 -~

0.85 A

RZ

0.75 A

0.65

NAP APAP

ActiveRank1
ActiveRank?2

ActiveRank3 -

ActiveRank

average



IMoLec;Im : Forced ASD phase separation
Modellin . " . oy e . . . ope . .
m m Laboratory demarcates transition to the intrinsic API solubility limit

By creating Amorphous Solid Dispersion (ASD) models via homogeneous APl/excipient mixing in
simulation supercells equilibrated under the effect of thermal motion via large-scale molecular dynamics
(MD), we previously determined that there is a firm correlation between the intrinsic behavior of the
API’s molar free energy (MFE) vs. API load and the experimentally observed limit of API solid solubility.
This correlation was expressed as the ActiveRank family of molecular descriptors (Fig.1).

[l Experimental OActiveRankl [ ActiveRank2 [OActiveRank3 [ ActiveRank average

> cooce | ([0 D0t | 0

Figure 1. ActiveRank MFE descriptors vs. experimental API solubility limit }g NanoMEGAS

Atvessed Tonly fer slestron aWlrsiltow

Extending this facility to more physically realistic systems, we recently carried out targeted MD (TMD)
simulations of forced amorphous phase separation (APS) into dense API clusters (Fig.2), the latter
considered precursors to the formation of API crystalline nuclei.

We found that within an 0 ,
interaction envelope, API S .100 | MFElinearbehavior s o o o .
energetics reached near-linear £ 500 ;

H X - H
beha\{pr a.t t!we gxpected AI?I. o ! API solubility limit < 40 wt%
solubility limit (Fig.3). Transition = -300 5 NanoMEGAS
to linearity is considered to T -400 K Ativasvet Tosis fer sisvtron oWt seiron
demarcate the intercept < 500 E
between homogeneously 5 10 15 20 25 30 35 40 45 50 55 60

Figure 2. Homogeneously distributed API (cyan) and dense APS cluster (red). All distributed APl and APS cluster API load (wt% in dry ASD)

MFE, beyond which APS is

simulations were carried out on Microsoft Azure. MML production and post- )
thermodynamically favored.

production algorithmics scaled linearly up to approx. 1000 CPU cores per MD run
while linear scaling was irrespective of system size for MFE calculations.

Figure 3. API MFE vs. APl load under the combined effect of excipient
and APS dense cluster dynamics.

Molecular Modelling Laboratory - Park Innovaare - CH-5234 Villigen - Switzerland - www.mmlpi.ch - info@mmlpi.ch - Tel. +41 445862050
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drug discovery

Organic polymorphs

we apply inverse modelling, Electron Energy Loss
Spectroscopy (EELS) DFT-TD first-principles 1o
new pharmaceutical polymorphs

Crystal Structure Prediction (CSP)

Prediction

DFT

Data Mining

i:z[???

i
e L

Density
|
Lattice Energy
I

Similarity

aw owml

Machine Learning

\1’




mml

Crystal Structure Prediction (CSP)

* First CSP algorithm developed in 2009.

 Currently treating covalent crystals with a knowledge-based
fitness function.

« Perfroms CSP starting from seven Bravais lattice types.

* Has been used to predict the crystal structures of hydrogen
storage materials.

« Written in Fortran, executed on High-performance computing
clusters



mml CSP flowchart
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CSP applications: covalent crystals

Tetracyanoquinodimethane (Cu

Semiconducting solid

mml

Transition
Space Group: 2
Density: 1.706 g/cm*

.

Al 2218010

Density: 1.815 g/em’*
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CSP applications: covalent crystals

mml

+ LiMg(BH,);(NH,),
Hydrogen Storage Material

« Experimental structure detected!
We predicted a number structures (isoenergetic to experimental

and phonon calculations show that they are stable)

1.
0 2Ortho(F) Ortha(])
0.8
> - -
2| o ider]e
506 I e i ¢Mono
o l |l |
w T
S l 'I # Hexa(exp)
< 0.2 ° —
o - -
0.0 » Hexa(gm)
0.5 0.6 0.7 0.8 0.9 1.0

Density (g/cm?)



mml CSP applications: covalent crystals

Sr(NH,),.Cl, (for n=8, 6, 4, 2, 1)
. Metal amine compounds for hydrogen storage
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Total CPU Time (Seconds)

CSP scaling

MareNostrum IV (Barcelona)
27t in TOP500 (June 2019)
Intel Xeon Platinum 8160 24C
at 2.1 GHz

Intel Omni-Path

No random seed

3 predictions

2800
2600
2400
2200
2000
1800
1600
1400

1200 | | | | | |
0 2000 4000 6000 8000 10000 12000

Number of Cores

= Hazel Hen (Stuttgart)

= 34t in TOP500 (June 2019)

= |ntel Xeon E5-2680v3 12C 2.5GHz
= Aries interconnect

= No random seed

= 2 predictions

1000
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900
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| | | | | |
0 2000 4000 6000 8000 10000 12000
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MML applies:

High-throughput quantum chemical
modelling
State-of-the-art electron microscopy

Artificial Intelligence (Al) heuristics

to the research and development of:

Drug design

Immune Interventions

pivoting on:

Big Data

Big infrastructures: High Performance
Computing (HPC)

Big Collaborations (HPC Vendors)



