
1

SOLUTION BRIEF

The task of Digital Transformation can be daunting. There are many points of difficulty and potential failures, but

the outcome of avoiding modernization is far more damning. At Ionate, we are transforming modernization into a

fully achievable path with Ionate AppDate.

We modernize legacy systems using AI / ML to aid in acceleration and guarantee a higher degree of success and

custom results in automation for your business rules. Enabling us to produce the correct end-game product with

cloud-native microservices faster, safer, and cost effectively.

Our AI / ML library is constantly growing and learning, increasing our comprehension of all legacy systems and

how best to approach each one. This solution brief is designed to show how we approach a specific legacy system,

IBM z/OS Assembler to Cloud-Native Microservices.

IBM Z/OS ASSEMBLER TO CLOUD-NATIVE MICROSERVICES

AI/ML Modernization for
IBM Mainframe Assembly

Business programs started using assembly when a lot of services

that we take for granted were not present.

• No databases for storing data (persistance)

• No high-performance IO to perform efficient file manipulation

• No ability of user programs to handle huge file sizes

• No ability of user programs to sort / access records in huge files

• No efficient way of sharing working data between different
programs

LIMITATIONS OF IBM Z/OS ASSEMBLER

Assembly, coupled with low-level operating system services (VSAM,

DFSMS) was the defacto way of solving these problems. The typical

methodology was:

• Implement the business logic in COBOL

• Implement some of the performance critical sections of the
business logic in Assembler

• Either Compile/Link the COBOL and Assembly programs so as to
support direct calling semantics between them.

OR

• Use CICS to Orchestrate between the COBOL and Assembler
programs

ASSEMBLY DISPARITY

SOLUTION BRIEF

2

SOLUTION BRIEF

Statelessness – As opposed
to Legacy/Monolithic applications,
Microservices are stateless. Being
stateless not just simplifies the
application design but also improves
scalability.

Having sophisticated

persistance functionality –
Modern Relational and NoSQL
database systems support
sophisticated persistance functionality
including features such as transactions,
atomicity, reliability, consistency,
backup/recovery, querying, which
were not available in older monolithic
systems.

Stream processing

infrastruture – Modern
infrastructure supports processing
enormous amounts of data via
streaming and there are many stream
processing applications that can be
used for this purpose.

Decentralization – Microservices
are decentralized by design which
improves the fault tolerance as well
as minimization of SPOF (Single point
of failure) risk.

High performance IO –
Multi-threaded file systems,
asynchronous IO and performance
gains in storage hardware lead to very
high processing IO.

Scalablity – By being stateless,
Microservices lead themseves to being
naturally more scalable.

Caching – Further performance
gains can be achieved by applications
such as Redis, which can be used
not just for caching but also in edge
computing.

Tenets of Modern
Architectures and
Features of Modern
Infrastructure

1. Transpile

Ionate’s HLASM (High Level Assembler) transpiler works in multiple stages.

In the first stage, the transpiler will parse the input assembler language,

building a sophisticated internal representation of the business logic in

the same. This includes the code and labels in the code segment and the

symbolic variables defined in the data segment.

From this, the transpiler also generates high level code structure and data

flow graph for the assembler application.

2. Analyze

The transpiler analyzes the code structure, paying special attention to

usage of various system services that are used such as VSAM, Control

Block and DFSMS.

Ionate’s runtime includes an emulator for the System 360/370/390 HLASM

language. This includes a virtual modelling of the CPU, registers and

memory in Java. This allows Ionate to model any assembler instructions

accurately and thus preserve the business logic.

3. Model

Ionate’s goal is not to emulate every single low-level facility that is provided

by zOS operating system.

Ionate instead attempts to glean and convert the high level business logic

from the programs and utilize our own libraries and layers for performing

system operations such as persistance, file operations and other high

performance IO.

During the modelling phase, the transpiler creates a model of the

intermediate representation that reflects the high level business logic and

purpose of the code, as opposed to low level instructions.

4. Transform

The final phase is transformation in which the high level intermediate

representation is transformed into the final Java code which can be

exposed as a REST webservice or an asynchronous job as needed.

To convert assembly, we take a four step approach where we transpile,

analyze, model (AI / ML), and transform.

For more information, please reach out to sales@ionate.io
or visit our website at www.ionate.io

ASSEMBLER CONVERSION PROCESS

Ionate is a registered trademark of Ionate, Inc. All other trademarks or service marks are the property of
their respective holders and are hereby acknowledged. ©2021 Ionate, Inc. All rights reserved.

mailto:sales%40ionate.io?subject=Assembler%20Solution%20Brief
http://www.ionate.io

