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Our team consists of...

Project Managers
Data Engineers
Data Scientists

DevOps Engineers

People

Expertise:

PhD in Mathematics
MSc Artificial Intelligence

MSc Computer Science

Microsoft Certified Azure Data Science Associate
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Tools

Cloud Platforms Languages Frameworks/Tools
 Amazon Web Services * Python * Pandas
* NumPy
* Microsoft Azure e CH
* PyTorch
* Google Cloud * Scikit-Learn

 TensorFlow
* SciPy
* Jupyter
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Does This Fit Your Requirements?

Example Solutions

e Solution 1 Retail Unit Closures — Classification

e Solution 2 Research Paper Helper — NLP

* Solution 3 Stock Market Prediction — Recurrent Neural Network/Deep Neural Network
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* Predict whether a retail unit will close or stay open

 Classification problem

Retail Unit Closures

* The data included demographic features, geographic features, store categories and more

Ca‘tgﬁforyl Zip role,, Square Foot,

”E_Od‘[:alf Closures...

Cafe 123495 1500
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From client’s SQL database
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Retail Unit Closures | Model Evaluation
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Project Plan

1. Data preparation a. Write SQL queries 2-4 weeks

b. Read from SQL

c. Transform into clear tabular form

d. Encode and impute values
2. Feature Selection and a. Determine which features are most important 2-3 weeks
Engineering b. Add any new features (discuss with client)
3. Train and Evaluate a. Prepare model training steps 2-3 weeks
Machine Learning Models b. Train multiple models

c. Compare predictive performance of models
4. Productionize Model and | a. Data processing steps loaded into Azure ML pipeline 1-2 weeks
Processing Steps b. Use best trained model within Azure ML

c. Raw data from SQL -> Azure Data Factory -> Azure ML ->

predictions back into SQL

5. Productionize Training a. Load training steps into Azure ML 1 week

b. Model retrains each week

Total: | 8-13 weeks

solutions

8|0SCORE



solutions

Research Paper Helper (NLP)

> Scrape ) Information

>Re,‘turn5 'Texl',>

Python Bot

Research papers
(Google Scholar)

Metric | Page no. | Text

kg/m2 | 4 8 kg/m2 of CO2 per day

CO2

kPa 9 101 kPa at sea-level

kgCO2 15 6.0 kg CO2 per serving
Text returned in
tabular form
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Web Scraping Research Paper Helper (NLP)

Natural Language Processing
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Stock Market (Prediction)

* Predict financial markets
* Regression problem on time series

» Using recurrent/deep neural networks

RNN/DNN Trained Model _
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We are Looking for the Next Challenge

Oscore ML

Introduction

At Oscore ML, we have a dedicated team of machine leamning engineers and developers that can understand
our clients’ requirements and produce robust solutions to Al/ML related problems. We have a wide range of
skills and knowledge in software development (especially Python and C#), machine learning, and data science.

We strive to provide the best possible services and solutions for our clients.

Approach to Solving a Machine Learning Problem

We aim to deliver the best possible results in the least amount of time. In order to do so, we have a structured

process for carrying out a machine learning task.

¥ Initial Communication

Client communication is one of our top priorities, and so we make sure all

stakeholders are in the loop every step of the way.

that can be used, and we can discuss possible routes to get to the intended

An initial discussion establishes the project needs and gives us an opportunity 'Y
to explore any available data. This also allows us to consider the technologies ) ) ) (=]

solution.

We then produce a project plan consisting of well-defined targets, steps to
achieve those targets, and an estimated project duration. After discussing the
plan and getting approval, we begin the main phase of the project.
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> Data Loading

Our machine learning team is experienced in cloud
technologies such as Microsoft Azure and Amazon
‘Web Services as well as using SQL. The data used for
our ML projects is often loaded from cloud storage,
where it is easily accessible and reusable. We store
data in the most efficient way to optimize data
storage and data loading.

» Data Cleansing and Transformations

We also undertake data processing, cleansing, and
structuring, to transform the data in preparation for
training. This allows wus to determine any
inconsistencies in the data, such as features with
missing or incorrect data, for which we can provide a
solution.

During this step we can merge any separate datasats
into one, ready for training. These processing steps
prepare the data in a repeatable way, so that we can
prepare any new data in the same fashion.

» Feature Selection and Engineering

Once the data has been processed, we can look at feature
selection and feature engineering. For this stage we use
several tools and visualizations to analyse the data such
as correlation matrices. These help us to determine
any features that are highly correlated with the target
variable and any features that have low correlation, and
are therefore not likely to affect model output. Feature
selectors are another tool used to determine which
features are likely to be most important to the model.
This is also a discussion that will take place with our
client, where we can look at possible new features that
can be added from the current data, or any new data that
could be valuable.

» Create and Train Machine Learning Models
After we have selected the features to be used, we
begin with model training. For building ML models, we
use frameworks such as PyTorch, TensorFlow and Scikit-
Learn. We first experiment by training using a selection
of algorithms that we think are best suited for the
problem, this allows us to view the project from a few
different angles, and then determine which is the best
route to take. We also optimize and fine-tune the
hyperparameters of each model when required to
improve the overall performance.
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» Model Evaluation

Once we have trained the models, we begin evaluating
model performance to judge which is best suited for the
data. For this, we consider several metrics for comparison
such as accuracy and precision in the case of classification
tasks, or RMSE and MAE for regression tasks. We also
explain the machine learning model by plotting feature
importance, this tells us which features had the most and
least impact on model output, which we compare against
the results from our feature selection process. If the
results are not sufficient, we may look to collect more
data, add new features or retrain the models. At this point
we would repeat our feature selection and model training
steps.

» Productionizing the Model
Once the best model or models have been determined,
we then move them into production, where we can
provide our client with a real-time inferencing service, or
set up an automated process, that can load and process
data, predict, and store the results in a data store. If
necessary, we will also productionize the model training
steps, such that when new data is available, the model is
automatically retrained and updated. If suitable, we can
use CI/CD tools such as Azure DevOps or GitHub Actions
throughout the project to automate deployment into our
clients’ environment.

Once in production, we are on hand to monitor and
optimize the service if required.

Contact us at

ml@oscore.io

for more info
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