
Achieving Explainability
in Digital Pathology AI

7 ideas for building
better ML models

Achieving Explainability

Building Digital Pathology AI models is hard and it can take a lot of
trial and error to get them working, and prove that they are robust.

We typically work with image detection and object classification
models, but you may be able to extrapolate some of these points to
other domains.

We’ve put together this list of tips, based on our experience, to help
you build more accurate, less biased models.

Digital pathology makes it easier to store, view
and organise medical images, making them
easier to access and share. It also facilitates
rapid engagement and collaboration (for
example in multi-centre studies) between
professionals. Second opinions can be easily
and quickly solicited from clinicians in other
locations, saving time and costs, and reducing
the risks associated with physically transporting
slides. Furthermore, organising images in a
transparent and consistent way makes it easier
for clinicians and scientists to satisfy regulatory
requirements.

Crucially, the increasing prominence of digital
pathology has provided access to specialist
software applications such as automated
image analysis tools. These are used to
assist in the interpretation and quantification
of medical images. These tools employ

sophisticated algorithms – often based on data
from thousands of subjects. Computational
algorithms, when correctly applied, are
objective, highly accurate and can provide
pathologists with more information to help
make a diagnosis.

More recently this means using artificial
intelligence (AI) for image analysis. There are
many examples of the use of AI or computer
vision for analysing images in scientific
research. For example, the ability to detect,
count and classify objects in images is a very
important and challenging task. It is used
in many areas, including image processing,
medicine and other sciences. For example, it is
used to analyse satellite images to count trees,
cars or people in a city. It is also used to identify
tumour cells in x-rays to detect cancer.

In digital pathology, getting enough clinical
samples is a starting point, but even then
building digital pathology AI models is hard.
How do you know if you have created a decent
AI model? The answer is simple: you don’t.
You’re almost certainly going to have to go
through a fair bit of trial and error to get the
right network architecture, hyper-parameters
and learning rate. .

Zegami users work with a variety of image
detection and object classification models.
The principles we explain here are applicable
across the board to imaging including digital
pathology. To achieve this, it is necessary to
assess a model’s quality, which is why we have
developed our 7 steps to explainability.

Understand what bias is 1

Bias can be the silent antagonist to training
any model. You have made sure to gather a
large hoard of input data, you’ve split it into
your correct subsets with a generous portion
of validation images to test with. You’re also
well aware of overfitting, diligently looking out
for signs of it in your training/validation loss
outputs (and hopefully applying some data
augmentation too).

After pouring some time into training, your
training accuracy is great. Your validation
accuracy is great. It’s exciting, you’ve trained
a model that can intuitively make a prediction
on the portion of your dataset that it has never
seen before. Job done!

Unfortunately, this is a trap many can fall
into (myself included). Your data can contain
unintended themes and giveaways that you

may have missed, that your model is an
expert at finding and leveraging. These
patterns are what we call a bias, and can
exist throughout your training, validation and
testing sets, and as your model only cares
about getting the highest score it can, it will
use these themes to cheat.

As an example, let’s say you’re training an
image classification model to predict whether
a slide of blood cells exhibit the signs of sickle
cell anemia. You have 5000 slides of regular
red blood cells from a hospital database,
and 5000 of sickle cell kindly donated by a
lab specialising in the condition’s research.
It is unlikely that the lab researching this
condition is using the exact same procedure,
microscopes, and slide annotation protocol as
the regular cell slides you got from a hospital’s
database. Maybe the lab puts the date in the

corner, or the hospital places the
patient ID on the side. Maybe the
lab uses a brighter backlight for their
slides. Whatever the differences, if a
difference can be at least somewhat
reliably associated to a class, you
have a bias, and your model may
completely ignore looking at the
cells when it can accurately predict
(on the training, validation and testing
sets) using these cues.

This happens a great deal. I have
run into this issue with a hospital
that donated healthy patient images
with an ‘R’ placed on their right side.
It seemed innocuous but diving into
some explainability really highlighted
what an issue this was.

A common bias
present in medical

data – clinicians
place arrows on

slides to help
indicate the

problem. These are
often saved into

the image and act
as input data.

A handful of the ’healthy’ class in a
dataset. After training the model, we can
map where the model paid most attention
to come to its conclusion. Notice the hot
’R’s and the complete disregard for the
important data. attention to come to its
conclusion. Notice the hot ’R’s and the
complete disregard for the important data.

Understand your training data 2

Part of the solution to the bias problem is
simply understanding your data, in a broad
scope. Check that the quality and distribution
of input data is well balanced.

An example of this could be a cat/dog
classifier with a training data set of 9000
images of cats and 1000 of dogs. Without
addressing the imbalance here, the resulting
model will be far more accurate with cats.
Certain measures can be made during
training to correct for slight imbalances, like
setting penalty/reward weights higher for
underrepresented classes. Data augmentation
should always be used to bulk up your
numbers too and can be used to tighten
under/over-representation gaps.

If the differences between classes are subtle,
separate all of them out next to each other
and see if you can tell which group is which
by looking at the low-resolution versions of
the images. If you can see differences between
the groups based on features not associated
with the target object, your model will likely
figure it out too.

Ultimately, this often overlooked first-pass
using our natural intuition can save a great
deal of time. Always remember that the
model is trying to cheat, and it’s your jot to try
and stop it. Geography, machine calibration,
demographics, language, ambient light,
even putting an ID in the corner, can all
ruin a dataset. Without delving into model
explainability, these problems can be
overlooked entirely.

You can spot bias simply by looking at your data.
This view shows two classes of patients - one class
came from multiple sources and the other from a
single hospital. If our eyes can detect this bias, so
can a model.

Get better at annotating 3

Good annotation is key. Everyone has heard
the garbage in, garbage out phrase when it
comes to working with data, but it is worth
reiterating. Feeding poor annotations into
a model is analogous to tutoring a student
mathematics, telling them that 4 x 4 = 17, and
then being disappointed when they can’t do
maths properly.

Assuming you’re not providing wrong
annotations, it’s important to try and use the
highest quality annotations that capture as
much relevant information as possible. In the
context of object detection (instances of a
class in a picture), many architectures focus
purely on bounding-box annotation. While this
works fine, it doesn’t tell the whole story, and
performs poorly for some tasks.In the context
of object detection (instances of a class in a
picture), many early architectures focused
heavily on bounding-box annotation. While this
works fine, it doesn’t tell the whole story, and
less adequately for some tasks.

Imagine you were tasked
with segmenting out the
roads in a satellite view
of a street. If you enclose
the roads in a box, you’re
typically going to box the
whole image. If your model
is designed to mirror this
input, you’re not going to
get much use from the
results: For less extreme
cases, using bounding
boxes introduces needless
error for all sorts of shapes.
Compare the unneeded
area used in these
pencil labels by arbitrary
orientation differences:

For less extreme cases, using bounding
boxes introduces needless error for all sorts
of shapes. Compare the unneeded area
used in these pencil labels by arbitrary
orientation differences:

Or a snake hiding amongst grass

In this example, the bounding box encloses
76% of the image, while the segmentation
mask covers 19% of it. In machine learning
we try to add enough bounded examples to
cancel out the differences between samples to
beat this issue – but that just brings us back to
bias. Snakes aren’t often photographed in the
snow, and huskies are.

There are many cases where instance
segmentation is a requirement (try separately
labelling two differently colored wires twisted
around each other with bounding boxes!),
but probably most useful is the ability to
gather more relevant information about an
object. If your model can segment out objects
in a microscopy slide it can calculate the
circularity and area of an instance, and possibly
extrapolate a sphericity and volume of an object.

All segmentation above was done using
Zegami’s own visual dataset creation tool.

Explore your results 4

Just as it is crucial to understand your input
data, scrutinising results should be under
several lenses. A model’s validation score
is only an indicator of success, useful for
detecting overfitting, but cannot be implicitly
trusted for quality assurance. Mentioned above,
the validation score will not tell you if a model
is actually generalising to the desired concept,
or just taking advantage of some unanticipated
bias in the data. If there is one take-away from
this section, it is this: Always assume your
model cheated. It is a data-scientist’s role to
prove to the world this isn’t the case - because
all too often it is.

As proud humans who put in a lot of work
to see their models succeed, we tend to be
optimistic when inspecting the output of
models. The output may not be perfect yet,
but that can be solved with more data and
more training time, right? While this generally
helps, if you are going off a validation score
and a glance over a few well-chosen inferences,
it is all-too convenient to assumeany
unexpected QA problems are simply the result
of a lack of time/data.

Inference all the test data you have, not just
a few you think are “especially good test
candidates”. What you think is a good candidate
may be trivial for your ultra-abstract model,
it may even trip on the “easiest” example
you have. Using Zegami, displaying tens of
thousands of images at once and exploring
confidence scores is one way to go. To really
get an intuitive sense of how your model is
seeing your data though we can dive a little

deeper with unsupervised clustering. Train up
your CNN, remove the final layer exposing the
flattened feature vectors, run your test images
through it and save the vectors. Reduce these
with Zegami’s clustering and you can see, in
2D, how everything fits together, from varying
representations of the model’s perception.

We can glean some information about
the model’s decision-making progress by
considering the anomalies. There’s a Bluetick,
a Whippet, and more entering this region
incorrectly – but we can guess why. Being
an image classification net not filtering by
any segmentation masks, the background
information is going into the decision-making
process. The terrain behind the dogs giving
the model an incorrect nudge, as African
Hunting Dogs are often photographed
amongst dry grass.

Flexible exploration is the key to finding issues
with results. It’s no secret that AI is capable of
coming up with ingenious ways to circumvent
generalising, it’s important to be able to
understand results from as many perspectives
as possible. Visualise confusion matrices visually
in graph views, compare ground-truth to best-
guess patterns, filter to a subset like this and
see if there are trends in the metadata differing
to those in other clusters. Do/should you expect
these differences?

20,580 dogs from 120
breeds, the Stanford

Dogs Dataset is
visualised using features

from an imagenet
ResNet50 model.

The model grouped
items according to its
intuition, without any

information about the
actual classes of the

dogs. Transparent color
overlays represent

ground-truth
class labels.

Encircling the bottom left cluster and shifting to Graph
View gives a clearer view of the African Hunting Dog
region, and its invasive look-alikes.

Have your model explain itself 5

Studies have shown that at least 42% of models
trained contain significant testing errors. Being
able to explain why decisions are arrived at is
expected in regular life. You wouldn’t expect
a doctor to be unable to explain why he gave
a patient a diagnosis for a condition. If they
couldn’t explain their decision, you wouldn’t
trust them. Why hold a model to different
standards? If a trained model flags an image
of a patient as ‘cancer risk’, the practitioner
wouldn’t be happy to simply start treatment
there and then - they’d want to know why it
thought that. One model was known to flag
up images as cancerous more often when
they contained a ruler - clearly a finding
worth catching.

Explainability is a rich and growing area of
study in neural nets. It aims to un-black-
box highly abstract and complex decision-
making processes into smaller, less abstract
components by visualising layers or gradients
in the net to see what is triggering responses.
This concept was touched upon in the bias
section – it allowed for the identification of bias
in arbitrary markings on x-rays. There were
many of these markings around the outside
of the images, prompting a trimming of the
images, but this was still not enough due
to the inconvenient R’s placed throughout
the healthy subset.

Visualising explainability outputs for many
images at once helps to separate the one-off
issues from the larger-scale bias issues.
The heatmap view detailing the regions of high
interest to a model (GradCAM) is only one
approach. It gives us an idea of where a
model was most interested in an image in
terms of its decision making (a saliency map),
which helps us to check that an end-to-end
decision was sensible.

We are experimenting with breaking the
process down into finer chunks. Deep neural
nets can have many abstract layers buried
within them, some more comprehendable
than others. One area of the graph may be
good at taking in edges from a previous layer
and understanding shapes. Another may
be geared for understanding textures, like
stripes. If you made a horse/zebra classifier, it
would be extremely useful to visualise these
intermittent outputs to see where a model
may performing better/worse. This insight
could also provide users with novel ideas of
features to look for in objects we may struggle
to classify conventionally, or it may allow you to
understand why your model is recognising your
curtains as a zebra.

Recognise faults early and cut losses6

One way to save a lot of time and compute
costs is to infer on a few samples of your
test set at the end of each epoch. This fail
fast approach means you can stop part way
through training and reset as needed without
wasting days only to find out it’s completely
messed up at the end.

TensorFlow’s callback system allows you
to do just this. Design a battery of simple
explainability tests to upload into an image
collection continuously during training. If you
can see that the validation score is rising, but

the attention of the model is drifting to the
wrong features, you can stop early and try to fix
your input data. This method can be applied to
all sorts of models – GANs benefit particularly
from this. Seeing generated instances get
worse over time can indicate that something is
wrong. It’s better to spot this an hour in over a
dozen hours in.

Make your training data and results
available to your team

7

Organise and make your training data available
to your entire team. It could be as simple
as a storage bucket on your cloud provider
or pouring it into some sort of Digital Asset
Management system. Even better, use Zegami.
This helps to get as many eyes and as many
perspectives as possible onto the training data
and results and allows for easy sharing of views
and findings for second opinions. Most often
it is the outliers and mis-classified subjects
that make the best new training data – have
multiple people tag up incorrectly labeled data
simultaneously for rapid iteration.

Share a snapshot
- a specific
combination of
filters and views -
with colleagues to
rapidly collaborate.
These snapshots
can be given a
description and
shared with a
simple URL.

info@zegami.com
www.zegami.com
UK: +44 (0) 3332 420 835
US: +1 (0) 31 5203 2009

