
Achieving Explainability 
in Digital Pathology AI

7 ideas for building  
better ML models 



Achieving Explainability

Building Digital Pathology AI models is hard and it can take a lot of 
trial and error to get them working, and prove that they are robust.

We typically work with image detection and object classification 
models, but you may be able to extrapolate some of these points to 
other domains.

We’ve put together this list of tips, based on our experience, to help 
you build more accurate, less biased models.

Digital pathology makes it easier to store, view 
and organise medical images, making them 
easier to access and share. It also facilitates 
rapid engagement and collaboration (for 
example in multi-centre studies) between 
professionals. Second opinions can be easily 
and quickly solicited from clinicians in other 
locations, saving time and costs, and reducing 
the risks associated with physically transporting 
slides. Furthermore, organising images in a 
transparent and consistent way makes it easier 
for clinicians and scientists to satisfy regulatory 
requirements.

Crucially, the increasing prominence of digital 
pathology has provided access to specialist 
software applications such as automated 
image analysis tools. These are used to 
assist in the interpretation and quantification 
of medical images. These tools employ 

sophisticated algorithms – often based on data 
from thousands of subjects. Computational 
algorithms, when correctly applied, are 
objective, highly accurate and can provide 
pathologists with more information to help 
make a diagnosis. 

More recently this means using artificial 
intelligence (AI) for image analysis. There are 
many examples of the use of AI or computer 
vision for analysing images in scientific 
research. For example, the ability to detect, 
count and classify objects in images is a very 
important and challenging task. It is used 
in many areas, including image processing, 
medicine and other sciences. For example, it is 
used to analyse satellite images to count trees, 
cars or people in a city. It is also used to identify 
tumour cells in x-rays to detect cancer.

In digital pathology, getting enough clinical 
samples is a starting point, but even then 
building digital pathology AI models is hard. 
How do you know if you have created a decent 
AI model? The answer is simple: you don’t. 
You’re almost certainly going to have to go 
through a fair bit of trial and error to get the 
right network architecture, hyper-parameters 
and learning rate. .

Zegami users work with a variety of image 
detection and object classification models. 
The principles we explain here are applicable 
across the board to imaging including digital 
pathology. To achieve this, it is necessary to 
assess a model’s quality, which is why we have 
developed our 7 steps to explainability.



Understand what bias is 1

Bias can be the silent antagonist to training 
any model. You have made sure to gather a 
large hoard of input data, you’ve split it into 
your correct subsets with a generous portion 
of validation images to test with. You’re also 
well aware of overfitting, diligently looking out 
for signs of it in your training/validation loss 
outputs (and hopefully applying some data 
augmentation too). 

After pouring some time into training, your 
training accuracy is great. Your validation 
accuracy is great. It’s exciting, you’ve trained 
a model that can intuitively make a prediction 
on the portion of your dataset that it has never 
seen before. Job done! 

Unfortunately, this is a trap many can fall 
into (myself included). Your data can contain 
unintended themes and giveaways that you 

may have missed, that your model is an  
expert at finding and leveraging. These  
patterns are what we call a bias, and can  
exist throughout your training, validation and 
testing sets, and as your model only cares 
about getting the highest score it can, it will  
use these themes to cheat. 

As an example, let’s say you’re training an 
image classification model to predict whether 
a slide of blood cells exhibit the signs of sickle 
cell anemia. You have 5000 slides of regular 
red blood cells from a hospital database, 
and 5000 of sickle cell kindly donated by a 
lab specialising in the condition’s research. 
It is unlikely that the lab researching this 
condition is using the exact same procedure, 
microscopes, and slide annotation protocol as 
the regular cell slides you got from a hospital’s 
database. Maybe the lab puts the date in the 

corner, or the hospital places the 
patient ID on the side. Maybe the 
lab uses a brighter backlight for their 
slides. Whatever the differences, if a 
difference can be at least somewhat 
reliably associated to a class, you 
have a bias, and your model may 
completely ignore looking at the 
cells when it can accurately predict 
(on the training, validation and testing 
sets) using these cues. 

This happens a great deal. I have 
run into this issue with a hospital 
that donated healthy patient images 
with an ‘R’ placed on their right side. 
It seemed innocuous but diving into 
some explainability really highlighted 
what an issue this was.

A common bias 
present in medical 

data – clinicians 
place arrows on 

slides to help 
indicate the 

problem. These are 
often saved into 

the image and act 
as input data. 

A handful of the ’healthy’ class in a 
dataset. After training the model, we can 
map where the model paid most attention 
to come to its conclusion. Notice the hot 
’R’s and the complete disregard for the 
important data. attention to come to its 
conclusion. Notice the hot ’R’s and the 
complete disregard for the important data.



Understand your training data 2

Part of the solution to the bias problem is 
simply understanding your data, in a broad 
scope. Check that the quality and distribution 
of input data is well balanced. 

An example of this could be a cat/dog 
classifier with a training data set of 9000 
images of cats and 1000 of dogs. Without 
addressing the imbalance here, the resulting 
model will be far more accurate with cats. 
Certain measures can be made during 
training to correct for slight imbalances, like 
setting penalty/reward weights higher for 
underrepresented classes. Data augmentation 
should always be used to bulk up your 
numbers too and can be used to tighten 
under/over-representation gaps. 

If the differences between classes are subtle, 
separate all of them out next to each other  
and see if you can tell which group is which  
by looking at the low-resolution versions of  
the images. If you can see differences between 
the groups based on features not associated 
with the target object, your model will likely 
figure it out too. 

Ultimately, this often overlooked first-pass 
using our natural intuition can save a great 
deal of time. Always remember that the 
model is trying to cheat, and it’s your jot to try 
and stop it. Geography, machine calibration, 
demographics, language, ambient light, 
even putting an ID in the corner, can all 
ruin a dataset. Without delving into model 
explainability, these problems can be 
overlooked entirely. 

You can spot bias simply by looking at your data. 
This view shows two classes of patients - one class 
came from multiple sources and the other from a 
single hospital. If our eyes can detect this bias, so 
can a model.



Get better at annotating 3

Good annotation is key. Everyone has heard 
the garbage in, garbage out phrase when it 
comes to working with data, but it is worth 
reiterating. Feeding poor annotations into 
a model is analogous to tutoring a student 
mathematics, telling them that 4 x 4 = 17, and 
then being disappointed when they can’t do 
maths properly. 

Assuming you’re not providing wrong 
annotations, it’s important to try and use the 
highest quality annotations that capture as 
much relevant information as possible. In the 
context of object detection (instances of a 
class in a picture), many architectures focus 
purely on bounding-box annotation. While this 
works fine, it doesn’t tell the whole story, and 
performs poorly for some tasks.In the context 
of object detection (instances of a class in a 
picture), many early architectures focused 
heavily on bounding-box annotation. While this 
works fine, it doesn’t tell the whole story, and 
less adequately for some tasks. 

Imagine you were tasked 
with segmenting out the 
roads in a satellite view 
of a street. If you enclose 
the roads in a box, you’re 
typically going to box the 
whole image. If your model 
is designed to mirror this 
input, you’re not going to 
get much use from the 
results: For less extreme 
cases, using bounding 
boxes introduces needless 
error for all sorts of shapes. 
Compare the unneeded 
area used in these 
pencil labels by arbitrary 
orientation differences:  

For less extreme cases, using bounding  
boxes introduces needless error for all sorts  
of shapes. Compare the unneeded area  
used in these pencil labels by arbitrary 
orientation differences:

Or a snake hiding amongst grass

In this example, the bounding box encloses 
76% of the image, while the segmentation 
mask covers 19% of it. In machine learning 
we try to add enough bounded examples to 
cancel out the differences between samples to 
beat this issue – but that just brings us back to 
bias. Snakes aren’t often photographed in the 
snow, and huskies are. 

There are many cases where instance 
segmentation is a requirement (try separately 
labelling two differently colored wires twisted 
around each other with bounding boxes!), 
but probably most useful is the ability to 
gather more relevant information about an 
object. If your model can segment out objects 
in a microscopy slide it can calculate the 
circularity and area of an instance, and possibly 
extrapolate a sphericity and volume of an object. 

All segmentation above was done using 
Zegami’s own visual dataset creation tool.



Explore your results 4

Just as it is crucial to understand your input 
data, scrutinising results should be under 
several lenses. A model’s validation score 
is only an indicator of success, useful for 
detecting overfitting, but cannot be implicitly 
trusted for quality assurance. Mentioned above, 
the validation score will not tell you if a model 
is actually generalising to the desired concept, 
or just taking advantage of some unanticipated 
bias in the data. If there is one take-away from 
this section, it is this: Always assume your  
model cheated. It is a data-scientist’s role to 
prove to the world this isn’t the case - because 
all too often it is. 

As proud humans who put in a lot of work 
to see their models succeed, we tend to be 
optimistic when inspecting the output of 
models. The output may not be perfect yet,  
but that can be solved with more data and 
more training time, right? While this generally 
helps, if you are going off a validation score  
and a glance over a few well-chosen inferences, 
it is all-too convenient to assumeany 
unexpected QA problems are simply the result 
of a lack of time/data. 

Inference all the test data you have, not just 
a few you think are “especially good test 
candidates”. What you think is a good candidate 
may be trivial for your ultra-abstract model, 
it may even trip on the “easiest” example 
you have. Using Zegami, displaying tens of 
thousands of images at once and exploring 
confidence scores is one way to go. To really 
get an intuitive sense of how your model is 
seeing your data though we can dive a little 

deeper with unsupervised clustering. Train up 
your CNN, remove the final layer exposing the 
flattened feature vectors, run your test images 
through it and save the vectors. Reduce these 
with Zegami’s clustering and you can see, in 
2D, how everything fits together, from varying 
representations of the model’s perception.

We can glean some information about 
the model’s decision-making progress by 
considering the anomalies. There’s a Bluetick, 
a Whippet, and more entering this region 
incorrectly – but we can guess why. Being 
an image classification net not filtering by 
any segmentation masks, the background 
information is going into the decision-making 
process. The terrain behind the dogs giving  
the model an incorrect nudge, as African  
Hunting Dogs are often photographed  
amongst dry grass. 

Flexible exploration is the key to finding issues 
with results. It’s no secret that AI is capable of 
coming up with ingenious ways to circumvent 
generalising, it’s important to be able to 
understand results from as many perspectives 
as possible. Visualise confusion matrices visually 
in graph views, compare ground-truth to best-
guess patterns, filter to a subset like this and 
see if there are trends in the metadata differing 
to those in other clusters. Do/should you expect 
these differences?

20,580 dogs from 120 
breeds, the Stanford 

Dogs Dataset is 
visualised using features 

from an imagenet 
ResNet50 model. 

The model grouped 
items according to its 
intuition, without any 

information about the 
actual classes of the 

dogs. Transparent color 
overlays represent 

ground-truth  
class labels.

Encircling the bottom left cluster and shifting to Graph 
View gives a clearer view of the African Hunting Dog 
region, and its invasive look-alikes.



Have your model explain itself 5

Studies have shown that at least 42% of models 
trained contain significant testing errors. Being 
able to explain why decisions are arrived at is 
expected in regular life. You wouldn’t expect 
a doctor to be unable to explain why he gave 
a patient a diagnosis for a condition. If they 
couldn’t explain their decision, you wouldn’t 
trust them. Why hold a model to different 
standards? If a trained model flags an image 
of a patient as ‘cancer risk’, the practitioner 
wouldn’t be happy to simply start treatment 
there and then - they’d want to know why it 
thought that. One model was known to flag  
up images as cancerous more often when  
they contained a ruler - clearly a finding  
worth catching. 

Explainability is a rich and growing area of 
study in neural nets. It aims to un-black-
box highly abstract and complex decision-
making processes into smaller, less abstract 
components by visualising layers or gradients 
in the net to see what is triggering responses. 
This concept was touched upon in the bias 
section – it allowed for the identification of bias 
in arbitrary markings on x-rays. There were 
many of these markings around the outside 
of the images, prompting a trimming of the 
images, but this was still not enough due  
to the inconvenient R’s placed throughout  
the healthy subset. 

Visualising explainability outputs for many
images at once helps to separate the one-off
issues from the larger-scale bias issues.  
The heatmap view detailing the regions of high
interest to a model (GradCAM) is only one
approach. It gives us an idea of where a  
model was most interested in an image in 
terms of its decision making (a saliency map), 
which helps us to check that an end-to-end 
decision was sensible.

We are experimenting with breaking the 
process down into finer chunks. Deep neural 
nets can have many abstract layers buried 
within them, some more comprehendable 
than others. One area of the graph may be 
good at taking in edges from a previous layer 
and understanding shapes. Another may 
be geared for understanding textures, like 
stripes. If you made a horse/zebra classifier, it 
would be extremely useful to visualise these 
intermittent outputs to see where a model 
may performing better/worse. This insight 
could also provide users with novel ideas of 
features to look for in objects we may struggle 
to classify conventionally, or it may allow you to 
understand why your model is recognising your 
curtains as a zebra. 

Recognise faults early and cut losses6

One way to save a lot of time and compute 
costs is to infer on a few samples of your 
test set at the end of each epoch. This fail 
fast approach means you can stop part way 
through training and reset as needed without 
wasting days only to find out it’s completely 
messed up at the end. 

TensorFlow’s callback system allows you 
to do just this. Design a battery of simple 
explainability tests to upload into an image 
collection continuously during training. If you 
can see that the validation score is rising, but 

the attention of the model is drifting to the 
wrong features, you can stop early and try to fix 
your input data. This method can be applied to 
all sorts of models – GANs benefit particularly 
from this. Seeing generated instances get 
worse over time can indicate that something is 
wrong. It’s better to spot this an hour in over a 
dozen hours in. 



Make your training data and results 
available to your team 

7

Organise and make your training data available 
to your entire team. It could be as simple 
as a storage bucket on your cloud provider 
or pouring it into some sort of Digital Asset 
Management system. Even better, use Zegami. 
This helps to get as many eyes and as many 
perspectives as possible onto the training data 
and results and allows for easy sharing of views 
and findings for second opinions. Most often 
it is the outliers and mis-classified subjects 
that make the best new training data – have 
multiple people tag up incorrectly labeled data 
simultaneously for rapid iteration. 

Share a snapshot 
- a specific 
combination of 
filters and views - 
with colleagues to 
rapidly collaborate. 
These snapshots 
can be given a 
description and 
shared with a 
simple URL. 
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