Solar PV App

OrxaGrid

OrxaGrid develops IoT devices, analytics and web dashboards for power grid customers Our app portfolio includes SaaS solutions for energy efficiency, asset health and energy forecasting A new suite of renewable energy apps are currently under development

ap of Alerts Details	X Table of Alerts	Table of Perfo	rmance Trackers				0
actory , Factory Incomer : Alert EE0001	Start Time	Ratus	• Alert •	Asset Point	* Feeder Name *	Alert Details	Alert ID
E Pb: crossed upper limit 8111.51220703125	17 Dec 2019	LVE	Pb	Factory	Factory incomer	crossed upper limit 8111.51220703125	EE0001
opm 1d 1w 1m 1y YTD All From Dec 17, 2019 To Dec 18, 2019	17 Dec 2019	Benchmark	SAIDI	Factory	Factory Heavy Loads	SAIDI in highest 5%	EE0002
204	17 Dec 2019	Benchmark	Customer Minutes Lost	Factory	Fectory Heavy Loads	CML current month is 80.62 min which is 13.57 % higher than long term average	EE0003
234 2	17 Dec 2019	LME	Pb	Factory	Fectory 1st Floor Loads	crossed upper limit 2338.51806640625	EE0004
A . MA	17 Dec 2019	Berchmark	CAIFI	Factory	Factory Heavy Loads	CAIFI in highest 5%	EE0005
TAAMIN AN .	17 Dec 2019	LIVE	Pb	Factory	Factory Incomer	crossed upper limit 8111.51220703125	EECCOG
01:00 05:00 09:00 12:00 15:00 18:00 21:00	17 Dec 2019	Benchmark	Poor PowerFactor	Factory	Factory Heavy Loads	Worst PowerFactor value 0.61	EE0007
	17 Dec 2019	LIVE	Pt	Factory	Factory Heavy Loads	crossed upper limit 3997.529052734375	660008
#2	17 Dec 2019	Benchmark	SAIFI	Factory	Factory Heavy Loads	SAIFI in highest 5%	EE0009
- RealPower-R RealPower-Y RealPower-B	 17 Dec 2019 	LIVE	Pr	Factory	Factory Heavy Loads	crossed upper limit 3997.529052734375	EE0010
	17 Dec 2019	Dw	Phase Imbalance B	Factory	Factory Gnd Floor Loads	phase-3 out of phase. Shift 30.0 % of phase-3 load to phase-1 & 30.0 % phase-3 load to phase-2	EE0011
otes	17 Dec 2019	Benchmark	Poor PowerFactor	Factory	Factory Heavy Loads	Worst PowerFactor value 0.81	EE0012
	17 Dec 2019	Benchmark	SADI	Factory	Factory Heavy Loads	SAIDI in highest 6%	EE0013
	17 Dec 2019	Benchmark	CAIDI	Factory	Factory Heavy Loads	CAIDI in Nighest 5%	EE0014
	17 Dec 2019	Uve	Phase Imbalance 8	Factory	Factory Gnd Floor Loads	phase-3 out of phase. Shift 30.0 % of phase-3 load to phase-1 & 30.0 % phase-3 load to phase-2	EE0015
	17 Dec 2019	LIVE	Pb	Factory	Factory 1st Floor	crossed upper limit 2338 51806640625	EE0016

OrxaGrid

© 2017-2019 Copyright. Orxa Grid All rights reserved.

Solar PV Sizing Tool

- Decision support SaaS tool
- Optimizes the capacity (size) of a proposed Solar Photovoltaic installation to maximise financial benefit for building owner
- Considers:
 - Electricity demand profile of building over past year using industry standard Half Hourly energy meter data
 - Building roof size, pitch angle and compass direction
 - Grid reference of building
 - Local energy tariffs for import and export
 - Historic meteorological data for building location
- Produces report for building owner complete with financial forecasts and energy visualisations

Background on Solar PV

- Solar Photovoltaic (Solar PV) is a renewable energy conversion technology which generates electricity from sunlight
- Size of Solar PV industry in 2018 was 52.5 billion USD
- Solar panels on rooftop absorb photons and produce direct current electrical energy
- Solar inverters convert direct current to alternating current for use in building or for export to power grid
- Solar PV installation system lifecycle is 25 years
- Installation reduces energy costs, reduces CO2 emissions and owner can earn energy export fees

User Story for OrxaGrid Solar PV App

- I am a building owner or building energy manager
- My building has high costs of energy usage
- I would like to reduce our energy costs and/or our CO2 emissions
- The building has spare roof space available
- We have access to capital for installation costs
- We lack domain-specific expertise on Solar PV system sizing
- We would like an independent cost benefit analysis report before approaching Solar PV installers for quotations

Value Proposition

- Free-to-use decision support tool (other similar software are paidfor solutions or try to upsell the installation product)
- Analyzes building energy demand and forecasted generation at a high temporal resolution (most solar installers do not offer this)
- Uses high spatial resolution resampled satellite weather data for accurate energy forecast
- Populates fields with useful default values which can be relied upon for many buildings
- Quick and easy to use, with integrated embedded maps

Benefits to OrxaGrid

- Gain experience in productionising our data science models directly to Azure cloud without involving our wider developer and operations team
- Lead generation of building owners interested in energy monitoring and analytics systems
- Increase brand awareness

Implementation

- Deployed as Flask app on Azure
- User input data received from HTML form and validated in Python
- API call constructed from form input and file upload
- HTTP request sent to solar energy forecasting service
- Annual hourly energy generation forecast received from API
- Optimal system size calculated in Python
- Results table and visualizations served to browser

Login Page

- Single user login
- Credentials provided in Help page
- Links to T+C's, privacy policy and help page provided

Help Page

- Instructions for using app
- Download link for sample Half Hourly energy data file
- Example results given

Data Entry Page

(53)

ne, Maharashtra, India

Takawe B

- User provides details of their building
- Form is loaded with reasonable default values
- GUI widgets for selecting azimuth (compass direction of roof) and pitch (roof tilt angle)
- Embedded map auto-fills latitude and longitude according to user selected location

File Upload

- User selects a Half Hourly Meter Data file to upload
- Industry standard data which itemises the electrical energy used by a building for each half hour of the past year

A	B	С	D	E	F	G	Н	1	J	ĸ
1 Meter No:	367238678									
2 Units:	kWh									
3 Date	Total	00:00	00:30	01:00	01:30	02:00	02:30	03:00	03:30	04:00
4 01-Jan-18	3 115.9	1.7	0.9	0.2	0.2	1.9	0.2	0.3	1.9	0.2
5 02-Jan-18	3 115.5	1.5	1.4	2.5	1.3	1.4	1.4	1.3	1.8	1.3
6 03-Jan-18	3 13.1	0.1	0.6	1.1	1	0.1	0.1	0.1	0.1	0.1
7 04-Jan-18	3 105.3	0.1	0.1	0.1	0.1	0.1	0.5	0.5	0.1	0.1
8 05-Jan-18	3 112.1	0.4	0.4	0.3	1.8	0.9	0.4	1.4	0.3	0.8
9 06-Jan-18	3 92.2	0.2	0.3	0.8	0.2	0.4	0.2	1.7	0.3	0.3
10 07-Jan-18	3 111.2	0.4	0.4	0.3	0.9	0.4	0.3	1.9	0.3	0.9
11 08-Jan-18	8 81.6	1.2	0.2	1.3	0.3	0.2	0.2	1.6	0.3	0.1
12 09-Jan-18	3 24.8	0.2	0.2	0.7	0.7	0.2	0.2	1.2	0.2	0.2
13 10-Jan-18	3 33	0.7	0.2	0.2	0.7	0.7	0.2	0.2	0.2	0.2
14 11-Jan-18	69.2	0.6	0.1	0.1	0.1	1	0.1	0.1	0.1	0.1
15 12-Jan-18	3 152.2	0.6	0.1	0.6	0.1	0.6	0.1	0.1	0.6	0.6
16 13-Jan-18	3 153.8	3	1.4	2.5	2	2.5	2	1.9	1.4	1.4
17 14-Jan-18	3 145.2	0.6	0.2	0.1	0.8	1.6	0.2	0.1	0.2	0.2
18 15-Jan-18	3 171.7	0.7	0.3	0.8	0.3	1.5	0.2	0.3	0.7	2.5
19 16-Jan-18	3 198.4	0.4	0.9	0.3	0.9	0.3	0.9	0.3	0.4	1.3
20 17-Jan-18	3 32.6	0.8	0.5	0.3	0.5	0.3	0.5	0.8	0.5	0.8
21 18-Jan-18	3 205.5	0.8	0.9	0.4	0.4	0.9	0.3	0.9	0.3	0.9
22 19-Jan-18	3 224.2	1.4	0.7	0.3	1.4	0.2	0.4	0.7	0.8	0.3

Results Page

- Table of financial returns
- Graphs of generated, imported and exported energy
- Optimal system size graph

Interpretation of Results

- Report can be downloaded as pdf file
- User can now make an informed choice as to whether Solar PV installation would benefit their building
- Provides benchmark for cost benefit calculations provided by installers during quotation phase

Development Team

- Sanjeev Kumar Data Scientist
- Robert Brown Power Systems Engineer
- Harish Iyer Front End Developer