

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

Sample Azure Database Performance Report
ACMEGizmo

Public

Node4 Limited

 Sample Azure Database Performance Report | Public | 26/06/2019 2

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

Contents
Proprietary Notice.. 2

Document Change Details .. 2

1 Summary .. 3

1.1 Process Overview ... 3

1.2 Diagnostics .. 3

1.3 Executive Summary .. 3

1.4 Next Steps ... 4

2 Server Level Recommendations .. 5

2.1 ACME-SQLSRV-PROD... 5

3 Database Level Recommendations ... 6

3.1 Mydevice_Marketing ... 6

3.2 Events_Marketing .. 9

3.3 SEOManagement_Marketing .. 11

4 Appendix A: Query Store Analysis ... 13

4.1 Mydevice_Marketing ... 13

Proprietary Notice
Information contained in the document is accurate to the best of Node4’s knowledge at the time of publication
and is required to be treated as confidential at all times. Information presented herein may not be used, copied,
disclosed, reproduced or transferred to any other document by the recipient, in whole or in part, without the prior
written authorization from a Node4 authorised representative.

Document Change Details
Version Date Author Role Changes

v1.0 Today D.B Expert Senior DBA First Draft

 Sample Azure Database Performance Report | Public | 26/06/2019 3

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

1 Summary

1.1 Process Overview

AcmeGizmo SQL Azure database server and a sub-set of three databases (Mydevice_Marketing,

Events_Marketing, and SEOManagement_Marketing) as identified on the completed Node4 Scope of Works

have been reviewed to help troubleshoot ongoing performance issues. From the review, a set of

recommendations have been created that have been categorised into server level recommendations and

database specific service optimisation / best practice.

1.2 Diagnostics

The table below summarises the key steps that have been taken to provide this report:

Step Remarks

Diagnostic Scripts RDBMS specific diagnostic scripts

Backup Analysis Database backup analysis

Database Server RDBMS specific database instance configuration review

High Availability RDBMS specific review of any HA features used

Performance Baseline Azure SQL Analytics and Query Store

Analysis Review and analysis of collected metadata and outputs

1.3 Executive Summary

This report identified several configuration issues at both the Server level and individual database level. At the

server level it has been identified that migrating to SQL Azure Always-ON failover group, SQL Azure elastic

pool, Elastic jobs and SQL Azure ATP (Advanced Threat Protection) could improve service resilience, security

and performance. There may also be an opportunity to help reduce costs by scaling up and down resource

automatically based on the known workload demand/usage patterns.

At the database level, it was recognised that there are numerous opportunities to improve current performance

particularly with the Mydevice_Marketing database. Such optimisations include; database compatibility settings,

configuration of auto tuning options, specific index optimisations, remediating service impacting issues around

blocking/locking, index maintenance, saving resources and improving performance through data compression,

column-store indexes and other specific in-memory OLTP optimisations.

We would welcome the opportunity to support any agreed remediation steps.

 Sample Azure Database Performance Report | Public | 26/06/2019 4

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

1.4 Next Steps

Below are the suggested next steps;

Step Remarks

Report Review Discuss and agree findings and remediation approach

Implementation Implementation of agreed specific changes

Validation Incremental implementation and review of performance

 Sample Azure Database Performance Report | Public | 26/06/2019 5

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

2 Server Level Recommendations

2.1 ACME-SQLSRV-PROD

Risk Previous

Rec?

Amended? Observation Suggested Action

H No No Consider migrating to SQL Azure Elastic pool

in one Standard (or Premium – if using in-

memory recommendations below) plan to

better utilise purchased DTUs. Consolidating

databases into an elastic pool allows un-used

DTUs to be shared across multiple databases

within the elastic pool. Its recommended that

an elastic pool is considered once the higher

impact recommendations detailed in this report

have been considered and implemented.

Running an elastic pool on a Premium service

plan may be cost effective whilst unlocking the

in-memory performance benefits identified

below

Once the high impact recommendations have

been implemented and performance (particularly

with Mydevice_Marketing database) has

improved, calculate the eDTUs required;

MAX(<Total number of DBs X average DTU

utilization per DB>,

<Number of concurrently peaking DBs X Peak

DTU utilization per DB)

Calculate the storage requirement (implementing

the compression and column-store indexes

should reduce the storage requirement) for all

candidate databases. Then determine the eDTU

pool size that provides the required amount of

storage.

Finally, take the larger of the eDTUs required v’s

the storage requirement as the initial sizing for

the elastic pool

H No No Enable SQL Azure ATP (Advanced Threat

Protection) for all databases. ATP provides;

audit data (using log analytics), sensitive data

management (detects tables with sensitive

data), security baseline (50 checks), alerts via

email for threats/breaches in real-time, SQL

security insights dashboard

SQL Azure ATP is free for the first month and

then chargeable thereafter. Given GDPR

requirements, its strongly recommended that this

service is implemented

M No No Active Geo-replication enabled, but databases

are not in an automatic failover group. If

appropriate (consider the architectural design

prior), configure automatic failover groups

Promote the databases into automatic failover

groups. Note that Elastic pool also supports

automatic failover groups and active geo-

replication. Note: DTUs allocated should match

across primary and secondary elastic pools

M No No Ensure that App tier connection strings are

correctly updated to use the SQL Azure

Failover Group read/write connection end-

point rather than individual server connections.

Check and validate App tier connection strings

and update as required

M No No Ensure that App tier connection strings are

correctly updated to use the SQL Azure

Failover Group read-only connection end-point

rather than individual server connections. Off-

loading reporting style workload to the

asynchronous read-only database copy can

help alleviate heavy workload / contention on

the primary read/write node.

Check and validate App tier connection strings

and update as required. Stored proc

sp_wait_for database_copy_sync may be used

to ensure committed transaction is received by

the secondary prior to releasing the thread

M No No Configure Elastic Jobs for Database

Maintenance

Dependent on adoption of Elastic Pool

M No No Enable monitoring and configure an alert to

trigger auto-scaling of the elastic pool.

Consider down-scaling at quieter times e.g.

overnight and at weekends

Dependent on adoption of Elastic Pool OR can

up/down scale individual databases (outside of

an elastic pool) based on alerting or time-based

scheduling

M No No Enable Database Automatic tuning options at

the server level and inherit down to database

level

Server settings may be overridden at the

database level as required

 Sample Azure Database Performance Report | Public | 26/06/2019 6

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

3 Database Level Recommendations

3.1 Mydevice_Marketing

Risk Previous

Rec?

Amended? Observation Suggested Action

H No No Service impacting incidents recorded. Please refer to Appendix B for further

information

H No No Query Store Analysis:

Large index FULL scans processing > 2m records

Please refer to Appendix A and Appendix C

for further information

H No No Backup retention set to Point-In-Time for 35 days.

Consider setting weekly, monthly, and annual

backup retention policies based on organisation

data retention policies. Reduce the PIT retention

down to what is required e.g. 3 days

Implement once Recovery Point objectives

clarified

H No No Lock waits on indexes (as at “Today”)

pk_Issues (Issues) 106 lock events, 73 secs wait

uc_Issues_Uid (Issues) 3 lock events, 4 secs wait

IX_ActorUid (AuthenticatedSessions)

See Appendix B for further information

M No No Auto Tuning Options (partially enabled – create

indexes only). Its recommended that all three SQL

Azure tuning options are enabled to allow for plan

optimisation, index creation and index deletion.

The Auto Tuning advisor uses machine learning to

determine the best optimisations and implements

these optimisations during quite times only on the

database. It also evaluates how successful the

optimisation was and can back-out an optimisation

if it was not successful in improving performance.

There is a 2 hour back-off limit for implementations

Enable all three auto-tuning settings (force

plan, create index, drop index). If indexing

divergence is not acceptable, then disable

create/drop index options and ensure that

recommendations are regularly reviewed,

evaluated and factored into future agile

development cycles

M No No Database compatibility level is set to 120 (SQL

2014). The current default compatibility level is

140 (SQL 2017). Compatibility level 140 enables

improved query memory grants (more accurate),

join optimisation (based on runtime row counts),

and interleaved execution that improves

performance of queries using table-based

functions. Compatibility level 140 includes

improvements enabled with Compatibility 130.

These comprise; multi-threaded insert statement

(or parallel plan), parallelism with memory-

optimised tables, cardinality estimation

improvements, and more aggressive stats

collection on large tables via multi-threaded

process

Smoke (or regression test) a copy of the

production dataset on a test database with

compatibility level 140 set;

ALTER DATABASE [Mydevice_Marketing]

SET COMPATIBILITY_LEVEL = 140;

GO

Ideally, a full stress test with benchmarking

would be appropriate, but since the

compatibility level may be set back down

dynamically, the risk associated with not

performing a full set of non-functional tests is

mitigated. As such, this dynamic change

may be applied to production with limited

non-functional performance testing

M No No Parameter [Auto Update Statistics

Asynchronously] is set to FALSE. Given the size

of the database and some of objects within, it

might prove beneficial to enable this parameter

(set to TRUE) when revising the database

compatibility level considering the more aggressive

auto update statistics sampling

ALTER DATABASE [Mydevice_Marketing]

SET

AUTO_UPDATE_STATISTICS_ASYNC ON;

 Sample Azure Database Performance Report | Public | 26/06/2019 7

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

Risk Previous

Rec?

Amended? Observation Suggested Action

M No No Heap tables detected SEO.IssuesPriority and

mm.StatusChanges

Consider adding a clustered index on these

tables to avoid any potential sort activities

M No No Regular stats and index maintenance and

user defined stats detected

Its recommended to use an intelligence statistics

and index maintenance solution such the

Node4solution that is based on Ola Hallengren’s

open source solution. Such maintenance is best

scheduled daily on SQL Azure using Elastic

Jobs

M No No Buffer memory consumption:

dm.DocumentContent (47GB out of 56GB)

SEO.IssuesNotes (1.4GB out of 56GB)

SEO.Issues (1.3GB out of 56GB)

SQL Server offers Row compression

(compression of fixed-width columns not fully

populated) or Page compression (like row but

with repeating pattern compression). Careful

use of compression can; reduce the amount of

disk space consumption, improve i/o

performance (more data, less blocks), and

improve cache performance (data is

compressed/uncompressed in L2 cache and

then fed to/from the SQL Buffer pool)

Consider using Page or Row compression on

selected indexes (clustered indexes included).

Indexes with high data volatility should be

avoided. Compression is most suited to read

biased objects with less writes. Varbinary(max)

is supported (dm.DocumentContent) but

nvarchar(max) data types and heap tables are

not currently supported

M No No High average_read_stall_ms (183.5ms).

Important as database is read biased (97%)

versus write (3%)

Consider implementing the in-memory (see

Appendix C) and data compression

recommendation to reduce physical disk read

overhead

M No No Wait events: ASYNC_NETWORK_IO (55%),

SOS_SCHEDULER_YIELD (13%),

PAGEIOLATCH_SH (12%)

Consider implementing the in-memory (see

Appendix C) recommendations to reduce locking

and blocking overheads

M No No New candidate indexes:

[Mydevice_Marketing].[SEO].[UserAttachment

s].[DocumentMetaDataId]

[Mydevice_Marketing].[dash].[Dashboards].
[TenantUId]

[Mydevice_Marketing].[SEO].[Exports]. [UId]

[Mydevice_Marketing].[SEO].[ReferralAgencie

s].[IsShared]

Its recommended to review and evaluate these

index recommendations using hypothetical

indexes prior to full implementation

M No No Top logical reads:

SEO.usp.UserTransfers_Filter /

usp_UserTransfers-FilterMany

Top physical reads:

usp.UserTransfers_Filter

Please review the recommendations in Appendix

A and Appendix C

M No No Indexes with no read activity:

IX_DateDeletedWithRefs (NodeReference)

IX_DateDeleted (NodeReference)

IX_NoteTypeId (ConcernNotes)

IX_DateCreated (ConcernNotes)

IX_IssuesStatus_ProdileId (IssuesStatus)

IX_OccurenceDateTime (Issues)

IX_DateCreated (Issues)

uc_Issues_ReferenceNumber_VenueId

(Issues)

uc_Users_PersonUId (Users)

IX_UsersStatus_UserId (UsersStatus)

uc_ExternalIdentities_SourceTypeId_External

UId (ExternalIdentities)

Its recommended to review and evaluate these

suggested index drops in case they are required.

Also – consider enabling Auto Tuning option

drop index

 Sample Azure Database Performance Report | Public | 26/06/2019 8

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

Risk Previous

Rec?

Amended? Observation Suggested Action

L No No QUERY_OPTIMIZER_HOTFIXES not

enabled. This database level scoped

parameter controls the usage of the latest

optimizer-related hotfixes released after SQL

Server 2016 RTM independently of the current

database compatibility setting

-- Enable query optimizer fixes for Primary

database

ALTER DATABASE SCOPED

CONFIGURATION

SET QUERY_OPTIMIZER_HOTFIXES = ON;

GO

-- Enable query optimizer fixes for Secondary

database

ALTER DATABASE SCOPED

CONFIGURATION FOR SECONDARY

SET QUERY_OPTIMIZER_HOTFIXES = ON;

GO

L No No MAXDOP unlimited. The optimiser can

parallelise all queries across all schedulers

where the cost threshold (default 5) is

exceeded. It can be useful to cap the degree

of parallelism where excessive parallelism and

locking waits are detected with high query

latency. Currently, there is no evidence to

justify capping parallelism, but should this

become an issue, suggested settings are

provided

Unable to adjust Cost Threshold for parallelism

so can cap MAXDOP;

-- Set MAXDOP for Primary database

 ALTER DATABASE SCOPED

CONFIGURATION

 SET MAXDOP = 8;

 GO

 -- Set MAXDOP for Secondary database(s)

 ALTER DATABASE SCOPED

CONFIGURATION FOR SECONDARY

 SET MAXDOP = 8;

 GO

L No No High VLFs – 2475 (4 vlfs per 16mb growth

increment). This could cause a performance

degradation on inserts, updates and deletes

The default auto growth size for the transaction

log is 16mb which is arguably too small for this

database workload. Unfortunately, it’s not

possible to change this setting or resize the

transaction log in SQL Azure without dropping

and recreating the database. Other

performance recommendations will help mitigate

this current constraint

L No No PLE 50 minutes, 56GB memory, 12

cpu/sched, avg load 20 tasks per sched, avg

task count 14

Other performance recommendations will help

increase PLE and thus buffer cache hits

 Sample Azure Database Performance Report | Public | 26/06/2019 9

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

3.2 Events_Marketing

Risk Previous

Rec?

Amended? Observation Suggested Action

H No No Query Store Analysis:

Large index FULL scan processing > 3m records

Please refer to Appendix C for further

information

H No No Lock waits on indexes (as at 31st Jan)

uc_EventLog_TenantUId_AggregateUId_AggregateVe

rsion (ad.EventLog) 10 lock events, 20 secs wait

Please refer to Appendix C for further

information

H No No Backup retention set to Point-In-Time for 35 days.

Consider setting weekly, monthly, and annual backup

retention policies based on organisation data retention

policies. Reduce the PIT retention down to what is

required e.g. 3 days

Implement once Recovery Point

objectives clarified

M No No Auto Tuning Options (partially enabled – create

indexes only). Its recommended that all three SQL

Azure tuning options are enabled to allow for plan

optimisation, index creation and index deletion. The

Auto Tuning advisor uses machine learning to

determine the best optimisations and implements

these optimisations during quite times only on the

database. It also evaluates how successful the

optimisation was and can back-out an optimisation if it

was not successful in improving performance. There

is a 2 hour back-off limit for implementations

Enable all three auto-tuning settings

(force plan, create index, drop index). If

indexing divergence is not acceptable,

then disable create/drop index options

and ensure that recommendations are

regularly reviewed, evaluated and

factored into future agile development

cycles

M No No Regular stats and index maintenance and

user defined stats detected

Its recommended to use an intelligence

statistics and index maintenance

solution such the Node4solution that is

based on Ola Hallengren’s open source

solution. Such maintenance is best

scheduled daily on SQL Azure using

Elastic Jobs

M No No High average_read_stall_ms (559.8ms). Consider implementing the in-memory

(see Appendix C) and data compression

recommendation to reduce physical disk

read overhead

M No No Wait events: PAGEIOLATCH_SH (38%),

LOG_RATE_GOVERNOR (26%),

ASYNC_NETWORK_IO (11%)

Consider implementing the in-memory

(see Appendix C) and suggested

remediation (in Appendix B)

recommendations to reduce locking and

blocking overheads

M No No Top logical reads: g.usp.EventLog_GetPageByTenant

Top physical reads:

*.usp_EventLog_GetPageByAggregate

Please review the recommendations in

Appendix C

M No No Buffer memory consumption:

Ad.Blobs (4.5GB out of 16GB)

*.EventLog (5.5GB out of 16GB)

SQL Server offers Row compression (compression of

fixed-width columns not fully populated) or Page

compression (like row but with repeating pattern

compression). Careful use of compression can;

reduce the amount of disk space consumption,

improve i/o performance (more data, less blocks), and

improve cache performance (data is

compressed/uncompressed in L2 cache and then fed

to/from the SQL Buffer pool)

Consider using Page or Row

compression on selected indexes

(clustered indexes included). Indexes

with high data volatility should be

avoided. Compression is most suited to

read biased objects with less writes.

Varbinary(max) is supported (ad.Blobs)

but nvarchar(max) data types and heap

tables are not currently supported

 Sample Azure Database Performance Report | Public | 26/06/2019 10

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

Risk Previous

Rec?

Amended? Observation Suggested Action

M No No Low DTU usage Current database service plan under-

utilised. Recommend migrating to SQL

Azure Elastic pool

L No No QUERY_OPTIMIZER_HOTFIXES not enabled. This

database level scoped parameter controls the usage

of the latest optimizer-related hotfixes released after

SQL Server 2016 RTM independently of the current

database compatibility setting

-- Enable query optimizer fixes for

Primary database

ALTER DATABASE SCOPED

CONFIGURATION

SET QUERY_OPTIMIZER_HOTFIXES

= ON;

GO

-- Enable query optimizer fixes for

Secondary database

ALTER DATABASE SCOPED

CONFIGURATION FOR SECONDARY

SET QUERY_OPTIMIZER_HOTFIXES

= ON;

GO

L No No MAXDOP unlimited. The optimiser can parallelise all

queries across all schedulers where the cost threshold

(default 5) is exceeded. It can be useful to cap the

degree of parallelism where excessive parallelism and

locking waits are detected with high query latency.

Currently, there is no evidence to justify capping

parallelism, but should this become an issue,

suggested settings are provided

Unable to adjust Cost Threshold for

parallelism so can cap MAXDOP;

-- Set MAXDOP for Primary database

 ALTER DATABASE SCOPED

CONFIGURATION

 SET MAXDOP = 4;

 GO

 -- Set MAXDOP for Secondary

database(s)

 ALTER DATABASE SCOPED

CONFIGURATION FOR SECONDARY

 SET MAXDOP = 4;

 GO

L No No High VLFs – 1097 (4 vlfs per 16mb growth increment).

This could cause a performance degradation on

inserts, updates and deletes

The default auto growth size for the

transaction log is 16mb which is

arguably too small for this database

workload. Unfortunately, it’s not

possible to change this setting or resize

the transaction log in SQL Azure without

dropping and recreating the database.

Other performance recommendations

will help mitigate this current constraint

 Sample Azure Database Performance Report | Public | 26/06/2019 11

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

3.3 SEOManagement_Marketing

Risk Previous

Rec?

Amended? Observation Suggested Action

H No No Backup retention set to Point-In-Time for 35 days.

Consider setting weekly, monthly, and annual backup

retention policies based on organisation data retention

policies. Reduce the PIT retention down to what is

required e.g. 3 days

Implement once Recovery Point

objectives clarified

M No No Wait events: PAGEIOLATCH_SH (58%), WRITE_LOG

(32%), ASYNC_NETWORK_IO (4%)

Consider implementing the in-memory

(see Appendix C) recommendations to

reduce locking and blocking

overheads

M No No New candidate indexes:

SEOManagement_Marketing].[sm].[YearGroups].[Learni

ngCentreId]

[SEOManagement_Marketing].[sm].[RegistrationGroups]

. [LearningCentreId]

Its recommended to review and

evaluate these index

recommendations using hypothetical

indexes prior to full implementation

M No No Top logical reads: usp_Apprentices_FilterByWildcard

Top physical reads:

usp_Apprentices_GetByIds

Please review the recommendations in

Appendix C

M No No Indexes with no read activity:

IX_SourceId (Contacts)

Uc_Contacts_Uid (Contacts)

IX_ForApprenticeId (Contacts)

uc_Apprentices_UPN_LearningCentreId (Apprentices)

Its recommended to review and

evaluate these suggested index drops

in case they are required. Also –

consider enabling Auto Tuning option

drop index

M No No Buffer memory consumption:

dm.DocumentContent (24GB out of 28GB)

sm.ApprenticeAttendances (0.5GB out of 28GB)

SQL Server offers Row compression (compression of

fixed-width columns not fully populated) or Page

compression (like row but with repeating pattern

compression). Careful use of compression can; reduce

the amount of disk space consumption, improve i/o

performance (more data, less blocks), and improve

cache performance (data is compressed/uncompressed

in L2 cache and then fed to/from the SQL Buffer pool)

Consider using Page or Row

compression on selected indexes

(clustered indexes included). Indexes

with high data volatility should be

avoided. Compression is most suited

to read biased objects with less writes.

Varbinary(max) is supported

(dm.DocumentContent) but

nvarchar(max) data types and heap

tables are not currently supported

M No No Regular stats and index maintenance and

user defined stats detected

Its recommended to use an

intelligence statistics and index

maintenance solution such the

Node4solution that is based on Ola

Hallengren’s open source solution.

Such maintenance is best scheduled

daily on SQL Azure using Elastic Jobs

M No No Database compatibility level is set to 120 (SQL 2014).

The current default compatibility level is 140 (SQL 2017).

Compatibility level 140 enables improved query memory

grants (more accurate), join optimisation (based on

runtime row counts), and interleaved execution that

improves performance of queries using table-based

functions. Compatibility level 140 includes

improvements enabled with Compatibility 130. These

comprise; multi-threaded insert statement (or parallel

plan), parallelism with memory-optimised tables,

cardinality estimation improvements, and more

aggressive stats collection on large tables via multi-

threaded process.

Smoke (or regression test) a copy of

the production dataset on a test

database with compatibility level 140

set;

ALTER DATABASE

[SEOManagement_Marketing]

SET COMPATIBILITY_LEVEL = 140;

GO

Ideally, a full stress test with

benchmarking would be appropriate,

but since the compatibility level may

be set back down dynamically, the risk

associated with not performing a full

set of non-functional tests is mitigated.

As such, this dynamic change may be

 Sample Azure Database Performance Report | Public | 26/06/2019 12

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

applied to production with limited non-

functional performance testing

Risk Previous

Rec?

Amended? Observation Suggested Action

M No No Parameter [Auto Update Statistics Asynchronously] is

set to FALSE. Given the size of the database and some

of objects within, it might prove beneficial to enable this

parameter (set to TRUE) when revising the database

compatibility level considering the more aggressive auto

update statistics sampling

ALTER DATABASE

[SEOManagement_Marketing]

SET

AUTO_UPDATE_STATISTICS_ASYN

C ON;

L No No QUERY_OPTIMIZER_HOTFIXES not enabled. This

database level scoped parameter controls the usage of

the latest optimizer-related hotfixes released after SQL

Server 2016 RTM independently of the current database

compatibility setting

-- Enable query optimizer fixes for

Primary database

ALTER DATABASE SCOPED

CONFIGURATION

SET

QUERY_OPTIMIZER_HOTFIXES =

ON;

GO

-- Enable query optimizer fixes for

Secondary database

ALTER DATABASE SCOPED

CONFIGURATION FOR

SECONDARY

SET

QUERY_OPTIMIZER_HOTFIXES =

ON;

GO

L No No MAXDOP unlimited. The optimiser can parallelise all

queries across all schedulers where the cost threshold

(default 5) is exceeded. It can be useful to cap the

degree of parallelism where excessive parallelism and

locking waits are detected with high query latency.

Currently, there is no evidence to justify capping

parallelism, but should this become an issue, suggested

settings are provided

Unable to adjust Cost Threshold for

parallelism so can cap MAXDOP;

-- Set MAXDOP for Primary database

 ALTER DATABASE SCOPED

CONFIGURATION

 SET MAXDOP = 4;

 GO

 -- Set MAXDOP for Secondary

database(s)

 ALTER DATABASE SCOPED

CONFIGURATION FOR

SECONDARY

 SET MAXDOP = 4;

 GO

L No No High VLFs – 790 (4 vlfs per 16mb growth increment).

This could cause a performance degradation on inserts,

updates and deletes

The default auto growth size for the

transaction log is 16mb which is

arguably too small for this database

workload. Unfortunately, it’s not

possible to change this setting or

resize the transaction log in SQL

Azure without dropping and recreating

the database. Other performance

recommendations will help mitigate

this current constraint

 Sample Azure Database Performance Report | Public | 26/06/2019 13

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

4 Appendix A: Query Store Analysis

4.1 Mydevice_Marketing

usp_UserTransfer_Filter

INSERT INTO @Ids

 SELECT pt.Id

 FROM SEO.UserTransfers pt

 INNER JOIN SEO.Users fp

 ON fp.Id = pt.FromdUserI

 INNER JOIN SEO.Venues fe

 ON fe.[Id] = fp.VenueId

 INNER JOIN SEO.Venues te

 ON te.[Id] = pt.ToVenueId

 LEFT OUTER JOIN SEO.Users tp

 ON tp.Id = pt.ToUserId

 WHERE

 (@FromUserUId IS NULL OR fp.[UId] = @FromUserUId)

 AND (@ToUserUId IS NULL OR tp.[UId] = @ToUserUId)

 AND (@FromVenueUId IS NULL OR fe.[UId] = @FromVenueUId)

 AND (@ToVenueUId IS NULL OR te.[UId] = @ToVenueUId)

 AND (@CreatedAfter IS NULL OR pt.DateCreated > @CreatedAfter)

 AND (@CreatedBefore IS NULL OR pt.DateCreated < @CreatedBefore)

 AND ((@IncludePendingAccept = 1 AND DateAccepted IS NULL AND DateCancelled IS NULL)

 OR (@IncludeAccepted = 1 AND DateAccepted IS NOT NULL AND DateCancelled IS NULL)

 OR (@IncludeCancelled = 1 AND DateCancelled IS NOT NULL AND DateAccepted IS NULL))

Index FULL scan (> 2m rows) against Mydevice_Marketing.SEO.Users using non-clustered non-unique

index;

CREATE NONCLUSTERED INDEX [IX_Users_VenueId_Inc_TaskListId_UId] ON [SEO].[Users]
(
 [VenueId] ASC
)
INCLUDE ([TaskListId],
 [UId]) WITH (STATISTICS_NORECOMPUTE = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON
[PRIMARY]
GO

Consider creating a unique index on Mydevice_Marketing.SEO.Users.Uid and include [Id] and [VenueId] to

facilitate an index seek operation (traverse the b-tree index and the leaf node) and avoid scanning the

entire index. This may be validated using a hypothetical index implementation (create index stats only)

and then validating using DBCC AutoPilot prior to implementing the physical index.

usp_UserTransfers_FilterMany may also benefit from this optimisation.

 Sample Azure Database Performance Report | Public | 26/06/2019 14

Node4 Limited | Millennium Way | Pride Park | Derby | DE24 8HZ | 0845 123 2222 | www.node4.co.uk

usp_NodeReference_Filter

SELECT

 fn.[UId] AS FromUId,

 fnt.Name AS FromType,

 tn.[UId] AS ToUId,

 tnt.Name AS ToType,

 nr.DateCreated,

 nr.CreatedBy,

 nr.DateDeleted,

 nr.DeletedBy

 FROM NodeReference nr

 INNER JOIN Node fn

 ON fn.Id = nr.FromId

 INNER JOIN NodeType fnt

 ON fnt.Id = fn.TypeId

 INNER JOIN Node tn

 ON tn.Id = nr.ToId

 INNER JOIN NodeType tnt

 ON tnt.Id = tn.TypeId

 WHERE

 (@ReferringFromType IS NULL OR fnt.Name = @ReferringFromType)

 AND (@ReferringToType IS NULL OR tnt.Name = @ReferringToType)

 AND (((@CreatedAfter IS NULL OR nr.DateCreated > @CreatedAfter)

 AND (@CreatedBefore IS NULL OR nr.DateCreated < @CreatedBefore))

 AND ((nr.DateDeleted IS NULL AND @DeletedAfter IS NULL AND @DeletedBefore IS NULL)

 OR ((@DeletedAfter IS NULL OR nr.DateDeleted > @DeletedAfter)

 AND (@DeletedBefore IS NULL OR nr.DateDeleted < @DeletedBefore))))

Index FULL scan (> 1.8m rows) against Mydevice_Marketing.hm.Node using non-clustered non-unique

index;

CREATE NONCLUSTERED INDEX [IX_TypeIdWithUId] ON [hm].[Node]
(
 [TypeId] ASC
)
INCLUDE ([UId]) WITH (STATISTICS_NORECOMPUTE = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON
[PRIMARY]
GO

Consider creating a composite unique index on Mydevice_Marketing.hm.Node [Id, Uid, TypeId] to facilitate

an index seek operation (traverse the b-tree index and the leaf node) and avoid scanning the entire

index. This may be validated using a hypothetical index implementation (create index stats only) and

then validating using DBCC AutoPilot prior to implementing the physical index.

