
Test data provisioning
for development
How to efficiently deliver realistic and compliant data

W H I T E PA P E R

Compliant
Database DevOps

Test data provisioning for development

Test data provisioning for development

Contents

Introduction 3

Test data provisioning approaches 5

 Restore from backup 5

 Data subsetting 6

 Data virtualization 7

 Synthetic data generation 8

 Data masking 9

 Data masking and data virtualization 10

Case studies 11

Summary 12

Test data provisioning for development

3

Introduction
Database teams are under growing pressure to deliver
more value to the business and speed up releases,
while ensuring the ongoing protection of sensitive data.
This means that having a robust and efficient process
for managing the delivery of test data to development
environments is more important than ever.

The aim of database testing is to improve the quality of software before release, so
that bugs are caught earlier, where it’s cheaper and faster to fix them, and to increase
confidence when updates are deployed to customers. Nothing slows release cycles
down quite as severely as reworks, and nothing’s more frustrating than pinpointing poor-
quality test data as the root cause.

But provisioning great test data efficiently, cost-effectively, and safely is a challenge.

Testing requirements vary across the different environments and stages of the release
pipeline. The closer we get to production, the more pressure we want to apply to our
work through performance testing and by running through scenarios that, although rare,
could feasibly occur. Significant investment in infrastructure is often required to facilitate
this, which isn’t practical for development environments earlier in the release pipeline.

The goal of the development team at the start of the testing process is to uncover as
many data-related issues as possible as early as possible. In order to do that, developers
need data that accurately reflects the production environment’s nuanced structure,
complexity, and referential integrity.

Test data provisioning for development

4

‘Shift-left testing’ is a useful concept here. The idea is to shift production behaviors
and processes to the left, in the context of a left to right workflow eg Dev > Test >
Staging > Production. That’s not just to staging environments, but as far as possible
into development. If an application is never fully tested against real data until it reaches
production, it will likely encounter data-related issues and suffer performance problems.
By shifting left, code can be tested against a range of values, volume, and distribution of
data comparable to production, so that data-related problems are caught earlier.

However, the shift left concept also introduces security and administration challenges
for the people tasked with managing production data. Without the right approach,
provisioning copies of production or production-like data to development teams can be
difficult and resource-heavy, resulting in escalating storage costs and long wait times for
up-to-date data.

And then there’s the question of how to handle sensitive data. Development teams
have always had a duty to safeguard this information. But the growth in data privacy
regulations the world over, spearheaded by the GDPR, requires teams to assess whether
they’re really doing everything in their power to protect it.

In this paper, we’ll review the most common approaches to provisioning test data
to development, and assess their capabilities for delivering realistic data, removing
bottlenecks, and meeting data privacy and protection regulations. We’ll also share cases
studies about organizations who have implemented successful processes.

"Within the space, we also see an increased emphasis on test data provisioning, as
opposed to merely test data management. This is likely due to continued interest in
DevOps practices, as well as Agile and continuous testing."

Bloor 2019 Market Update on Test Data Management

Test data provisioning for development

5

Test data provisioning approaches
Badly designed processes for delivering test data downstream can grind things to a
halt. Developers waiting for a refresh or a new dataset are blocked from progressing
their changes upstream. Data that doesn’t resemble production makes testing less
reliable but using actual production data leads to expensive storage costs and risks
non-compliance with data privacy legislation. In this section, we’ll explore how the most
common approaches to test data provisioning stack up.

Restore from backup

Realistic data Removing bottlenecks Data privacy

According to the State of Database DevOps report, 65% of organizations copy down
raw production data for development, typically taken from a backup. While the data is
certainly realistic – you can’t get more production-like than a copy of production – this
method is flawed when it comes to data privacy and causes significant bottlenecks
when refreshing environments.

Restoring from a backup is a slow process. The datasets are often large, causing a
bottleneck for developers waiting on fresh data. An automated, overnight process
can help, but it does little for ad hoc requests or emergency situations. Teams may be
tempted to just work with the dataset they currently have, but an out-of-date dataset
sacrifices quality and risks errors later. A slow process for provisioning test data
invariably means a slow response to reworks and impacts an organization’s ability to
deploy updates and outpace the competition.

Copying production data is also expensive. Storage must be allocated for each copy.
Depending on the size of the data and the number of development environments, this
could incur additional hardware, licensing, and support costs. For some organizations,
cost is the main blocker to a transition from developing on a shared database to
developers working on their own local sandboxes.

A dataset that’s simply an untreated copy of production will, in most cases, contain
sensitive data. Development environments, by necessity, don’t have production-grade
security controls – they’re open to a much wider group of users and have lower levels of
perimeter defense. When you move sensitive data into development environments you
increase your risk of a data breach, whether through malicious or accidental means, and
face the threat of noncompliance. Stiff fines from regulators and negative press could
have a significant impact on company finances.

As a method for delivering test data to development teams, restore from backup simply
doesn’t meet today’s requirements for speed and safety.

Test data provisioning for development

6

Data subsetting

Realistic data Removing bottlenecks Data privacy

Provisioning full copies of production data for development environments is inefficient,
expensive, and leaves organizations at risk of noncompliance in the event of a data
breach. The aim of data subsetting is to reduce the overall size of the dataset so that it’s
faster and easier to distribute and test with. While this approach helps to remove some
bottlenecks, it introduces challenges around ensuring the data is representative and
referentially intact, and it doesn’t automatically alleviate compliance concerns.

Development teams want to work with data that accurately reflects the real world,
to better test their work before pushing it upstream. Providing a copy of the entire
production database is too costly in time and disk space, especially when refreshing
multiple developer environments. Data subsetting involves cutting the dataset, for
example from several hundred million records to several hundred thousand records. This
enables developers to execute their tests faster. Reducing the byte size, for example
from 1TB to 1GB per copy, also reduces storage and infrastructure costs, leading to
faster refresh times.

However, excluding such a large chunk of records makes it difficult to accurately reflect
the demographic shape, distribution, and characteristics of production. If you reduce
your dataset by 95%, for example, you may break foreign key constraints or end up with a
statistically non-representative data sample. Shift-left testing aims to catch bugs where
it’s cheapest to fix them, but a dataset that isn’t realistic enough to cover an adequate
range of test cases leads to fewer bugs being caught in development, not more.

Further, a slice of production data is likely to include confidential information. One option
would be to remove all the sensitive bits as the subset gets created, but this only adds to
the challenge of arriving at a realistic dataset.

The big plus for data subsetting as an approach is the small size, which makes it faster
to deliver test data to teams while keeping infrastructure costs to a minimum. But these
gains in efficiency are cancelled out by the work required to ensure that the eventual
dataset is also realistic and compliant.

“You must have a way of ensuring that your subset is representative of your entire
dataset, and it must be referentially intact.”

Bloor 2019 Market Update on Test Data Management

Test data provisioning for development

7

Data virtualization

Realistic data Removing bottlenecks Data privacy

Another approach that results in lightweight and easy to provision datasets is data
virtualization. Like data subsetting, the aim is to take a copy of production and shrink
it, removing bottlenecks and reducing infrastructure and storage costs. However, unlike
data subsetting, data virtualization enables complete datasets to be provisioned so that
development teams receive a mirror copy of production to work with.

Virtual copies work just like a normal database – they can be developed on and tested,
and their updates migrated upstream – but their tiny footprint makes them incredibly
agile and cost effective. Their small size is due to each copy referencing a master
dataset, rather than physically containing the actual data. As the master dataset can
be a complete copy of the production environment, each clone created from it is fully
representative and referentially intact. With realistic test data, developers can take
greater ownership of their changes, reducing reliance on others to pick up bugs later.

Data virtualization leads to short wait times for fresh data, reducing the time it takes
to provision the latest update from hours or days to seconds. The minimal disk space
requirement also removes blockers to sandboxed development caused by concerns
around mounting storage costs. Sandboxed database development is a recommended
DevOps practice, as it allows for increased experimentation and aligns application and
database team processes.

Data virtualization does much to remove bottlenecks and provide a fast and efficient
way of provisioning production data to development environments. However, without
additional treatment, the master dataset is likely to contain confidential information. As
such, organizations face the same data privacy concerns as outlined above.

“With data virtualisation, you never have to worry whether your test dataset is
representative, because it consists of your entire dataset.”

Bloor 2019 Market Update on Test Data Management

Test data provisioning for development

8

Synthetic data generation

Realistic data Removing bottlenecks Data privacy

Generating fake data is a guaranteed way of ensuring that no confidential information is
present in test datasets. This enables development teams to carry out their work without
worrying about compliance and helps to protect the business in the event of a data
breach. But as the balance tips in favor of data privacy, there are challenges to contend
with around producing realistic datasets and provisioning them efficiently.

Producing synthetic data through automation, as opposed to by hand, allows for the
creation of quite complex datasets. Without too much effort, it’s possible to generate
large volumes of perfectly reasonable data, which on viewing appears realistic, at
least in terms of the type of data expected to be present in each column, eg valid
email addresses. The difficult thing is being able to generate test data that accurately
reflects the shape and size of production. Without the correct spread of demographic
information, for example, the dataset is unlikely to cover enough test cases to make it
truly useful for developers to work with. The effort involved in generating accurate data
is often so high it may actually be easier to do it by hand.

The size of the generated dataset may also present similar challenges to before. If it’s
simply a synthetic representation of a full production database, then additional disk
space will be required for each environment. Updating the dataset is also no mean feat.
As new data enters and changes the shape of production, it’s critical that test data keeps
up, so the data model needs constant attention. If production changes frequently, this
could quickly become a bottleneck.

Synthetic data generation is the safest way to prevent sensitive information from being
spread around the data estate when provisioning test data. However, the trade-offs are
a set of significant challenges around ensuring test data is representative, and around
allocating storage.

“One of the chief advantages of synthetic data is that it is fundamentally not real,
and therefore cannot be sensitive.”

Bloor 2019 Market Update on Test Data Management

Test data provisioning for development

9

Data masking

Realistic data Removing bottlenecks Data privacy

An alternative approach to generating synthetic data is to mask the data you already
have. Whereas synthetic data generation replaces all the data with fake values, data
masking only replaces the sensitive data, resulting in a sanitized copy of production.
Development teams can now be confident that the data they’re working with is both
realistic and safe. That said, simply swapping out the sensitive information means the
dataset is identical in size to the original copy, so this approach has bottlenecks similar
to restore from backup and synthetic data generation.

With data masking, sensitive data is replaced through executing a masking script
against the databases. Apart from the values that have been masked, the data is intact,
so it’s practically identical to the real thing in terms of its size, shape, and demographic
makeup. Data masking also benefits from automation. As new environments are
refreshed with data from the most recent backup, a masking script is immediately run
to sanitize them. Reducing the time period where sensitive data exists in non-production
environments is crucial in mitigating the impact of a data breach. Wherever confidential
information lives, even for a short while, there’s the potential for unauthorized access or
an accidental leak to occur. A safer approach is to mask the data before it’s provisioned
to development environments, which in turn reduces the number of times the masking
script needs to be executed.

With data masking, the same difficulties exist as with distributing full copies of
production data, with the additional step of masking. Bottlenecks around checking the
data for sensitive values have been removed, offering some improvement, but data
masking alone is not going to satisfy the requirements of agile development teams,
even if it does appease data protection officers – pseudonymization is a recommended
technique in the GDPR, for example.

“Sensitive data is of extreme importance right now, thanks to GDPR as well as
upcoming regulations. This has produced a great deal of interest in the data security
space, and this has had a knock-on effect on test data management and particularly
data masking.”

Bloor 2019 Market Update on Test Data Management

Test data provisioning for development

10

Data masking and data virtualization

Realistic data Removing bottlenecks Data privacy

All the approaches above have plusses and minuses when it comes to provisioning
realistic and compliant test data to development efficiently. Data virtualization
surpasses all other methods in terms of speed and efficiency and removes all but a few
bottlenecks. Those bottlenecks that remain lie with what the master dataset contains,
rather than with the technology itself. If the clones simply reference a copy of production,
then it’s likely that sensitive data will be distributed and exposed to developers. But if the
clones reference a sanitized dataset, such as can be achieved with data masking, then
we immediately eliminate data privacy concerns.

A combined data masking and data virtualization approach enables lightweight, realistic,
and compliant test data to be provisioned to development teams efficiently and with
ease. Infrastructure and storage concerns go away, and development environments
can be refreshed in seconds with trustworthy data. Each clone is an exact replica of the
masked database, delivered in the same way, every time.

Data masking and data virtualization together solve virtually all the major challenges
for provisioning test data, which creates new opportunities for database development
teams. It enables a transition from shared to sandboxed development environments,
thanks to the storage savings of data virtualization. Lightweight clones containing
sanitized data allow for self-service and automated provisioning processes. Shift-left
testing is made possible, as developers can receive a steady stream of realistic, up-to-
date, and safe data to work with, driving up the quality and reliability of database updates.

“Test data provisioning particularly benefits from a data virtualisation capability.”

Bloor 2019 Market Update on Test Data Management

“Test data (or copy data) virtualization is a technology that is increasingly popular,
when used in combination with Static Data Masking, to speed up the provisioning of
and updates to target environments, in addition to significantly reducing the amount
of storage required by these environments.”

Gartner 2018 Market Guide for Data Masking

Test data provisioning for development

11

Case studies
PASS
With over 300,000 members and more than 250 local chapters around the world, PASS
(Professional Association for SQL Server) has a large database that is constantly being
accessed and updated through its various websites.

To meet the requirements of global data privacy regulations, PASS implemented a
Compliant Database DevOps process to improve the way they developed their database
and ensure the protection of sensitive information.

By implementing SQL Provision, PASS was able to move away from working on a shared
database and transform the way test data was delivered to development environments.

Developers now test their changes against their own copies of the production database
which, while masked, are fully representative of the real database and can be provisioned
to them in seconds.

Read the full case study at
www.red-gate.com/solutions/entrypage/pass-compliant-database-devops

KEPRO
KEPRO, a leading US healthcare provider, encountered difficulties ensuring that the data
supplied to development was HIPAA compliant and updated regularly.

The old method of restore from backup was slow and limited data refreshes to once a
quarter, holding back development teams from receiving up-to-date data.

The team was also under pressure to speed up development cycles and get updates out
as quickly as possible, so they needed a process that could match up.

Since implementing Redgate SQL Provision, KEPRO have been able to get a new offshore
development team up and running and compliant and save 15-20 hours a week in
provisioning test data.

Read the full case study at
www.red-gate.com/products/dba/sql-provision/resources/kepro-ensuring-hipaa-
compliance-with-sql-provision

http://www.red-gate.com/solutions/entrypage/pass-compliant-database-devops
http://www.red-gate.com/products/dba/sql-provision/resources/kepro-ensuring-hipaa-compliance-with-sql-provision
http://www.red-gate.com/products/dba/sql-provision/resources/kepro-ensuring-hipaa-compliance-with-sql-provision

Test data provisioning for development

12

Summary
As database teams grapple with shortening release cycles and tightening data
protection laws, the need to deliver realistic and compliant test data to development
quickly and safely is greater than ever. Choosing the wrong test data provisioning
approach can hamper development, drive down quality, risk non-compliance, and lead to
escalating infrastructure costs.

Traditional approaches like restore from backup and data subsetting are unable to
meet the demands of contemporary database development. And while synthetic data
generation provides a failsafe way of preventing sensitive information from reaching
development environments, it involves significant bottlenecks.

The answer is to implement a combined data masking and data virtualization approach.
Data masking plus data virtualization solves virtually all the major challenges for
provisioning realistic and compliant data and opens new opportunities for database
development teams. It enables teams to transition from shared to dedicated
development environments, shift testing left, and refresh data on-demand through self-
service and automated processes.

Organizations such as PASS and KEPRO are implementing data masking and data
virtualization with SQL Provision to streamline test data provisioning, transform their
approach to database development, and deliver value to their customers faster.

SQL Provision combines data virtualization with data masking to enable realistic and
compliant test data to be delivered to developers at speed.

The web app provides a single pane of glass for managing test data provisioning
processes, and provides oversight on where clones are located, how much disk space
they’re using, when they were created, and by who.

SQL Provision empowers teams to adopt self-service and automation to streamline test
data provisioning. By reducing storage requirements by up to 99%, it makes transitioning
from shared to dedicated development environments easy.

Learn more at www.red-gate.com/products/dba/sql-provision/

http://www.red-gate.com/products/dba/sql-provision/

