
Using IKAN ALM for DevOps
Bridging Development and Operations

2 Bridging development and operations

Table of contents
Using IKAN ALM for DevOps...5

IKAN ALM architecture and functionality..5

Life Cycle definition..6

Build process..6

Deploy process...6

Approval process...6

DevOps solutions for diverse environments...7

IKAN ALM and mainframe..7

IKAN ALM and distributed development..8

IKAN ALM and a non-standard environment..9

The benefits of implementing DevOps.. 10

Summary...12

Conclusion...12

For more information...13

Appendix: Expert opinions... 14

3Bridging development and operations

Bridging development and
operations
Software application development, including
the implementation and maintenance hereof,
involves many complex processes combining
a series of roles, tools and deliverables. Those
processes need to be efficient, repeatable,
auditable, predictable, secure, maintainable
and cost-effective.

Many companies have already implemented
various levels of automation to streamline those
processes, such as Waterfall, Agile, Continuous
Integration or Continuous Delivery.

DevOps improves the communication between all stakeholders

A modern ALM solution is an integrated set of tools for:

•	Requirements Management
•	Versioning
•	Automated Build & Deploy procedures (to test and production environments)
•	Lifecycle and Approval Management

Furthermore, the ALM solution adheres to the relevant process standards and governance rules.

Today, another methodology gains in
importance, namely DevOps

DevOps focusses on the interdependence of users, soft-
ware development and IT operations. It stresses the
importance of communication, collaboration and integra-
tion between all relevant stakeholders be it the business,
software developers or people responsible for operations
and production.

To optimize the interdependence and communication,
a controlled, reliable and automated overall solution
achieving the highest level of automation (Continuous
Deployment) is essential.

This DevOps way of working can be achieved by imple-
menting an efficient Application Lifecycle Management
(ALM) solution.

4 Bridging development and operations

Modern ALM solutions have to be:

The list below indicates the problems software development organizations are facing without the use of a modern
ALM / DevOps solution.

Methodology-independent: It does not
matter whether you use a linear (waterfall)
or iterative (Agile) approach for your devel-
opment process.

Tool-independent: Organizations/depart-
ments can continue using their preferred
tools in each stage of the process.

Repository-neutral: Cross-platform devel-
opment is perfectly feasible.

Multi-platform: mainframe, distributed or
mobile, all of them are covered.

Development teams lose too much time with
the build and deploy work, too many avoid-
able mistakes are being made and too much
effort is necessary to communicate properly

Testers lose too much time setting up test
environments and, as a consequence, they do
not have enough time to test applications in a
proper way

Operations people don’t receive all the needed
information or components are missing

The communication between the different
stakeholders needs to be improved

Advantages of DevOps

Less time and resources needed for develop-
ing, testing and deploying (multi-environment)
applications

Reduced risk of human errors

Improved efficiency and productivity

Improved application quality and release
reliability

Faster time-to-market

Improved customer satisfaction

Without DevOps

5Bridging development and operations

Using IKAN ALM for DevOps
IKAN ALM is a cross-platform web-based solution for
Application Lifecycle Management. It combines DevOps
initiatives (continuous build and continuous integration)
and lifecycle management to support the complexity of
service-oriented architectures and highly distributed
systems.

Being a modern ALM solution, IKAN ALM can be used
in any development environment, be it a mainframe or
distributed environment. It also integrates with less com-
monly used environments, such as ODI.

The ability of IKAN ALM to communicate with a variety
of Issue Tracking and Versioning tools, saves software
development companies from adapting to new tools. The
tools already in use can be integrated within the overall
application life cycle.

IKAN ALM starts where the actual development ends.
This simply means that when a developer commits his
code to the version control repository, IKAN ALM will
notice this change and launch the related build and
deploy processes.

IKAN ALM architecture and
functionality
Automated build and deploy procedures will solve most
of the issues mentioned before and, as a result, will speed
up the processes and enhance the quality. Integrations
with Issue Tracking and Versioning systems will add even
more efficiency and data consistency.

IKAN ALM is a platform and environment-independent
Application Lifecycle Management solution aimed at
ensuring a DevOps way of working throughout the whole
lifecycle of an application. IKAN ALM is a web-based
application with a server-agent architecture.

IKAN ALM can be used in any development
environment, be it a mainframe or distributed
environment. It also integrates with less
commonly used environments, such as ODI.

6 Bridging development and operations

Life Cycle definition
Ability to define your own project life cycle
with a Build, Testing and Production Levels

Build process
Consists of what we call a number of
core phases, solution phases and custom
phases. Core phases are IKAN ALM phases
needed to have IKAN ALM running, solution
phases are phases that provide specific
build functions for your environment and
custom phases are phases built by you.

Examples of solution phases are phases for
compiling COBOL, Assembler or PL/1 code
on the mainframe.

Deploy process
Consists of what we call a number of
core phases, solution phases and custom
phases. Core phases are IKAN ALM phases
needed to have IKAN ALM running, solution
phases are phases that provide specific
deploy functions for your environment and
custom phases are phases built by you.

Examples of solution phases are phases for
stopping and starting application servers,
restore Oracle Data Integrator scenarios,
DB2 binds on the mainframe, etc.

Approval process
Next, there is the possibility to make your
deployments approval-based and to be
notified of any action executed by IKAN
ALM.

Developers use the IDE (Integrated Development Environment) of their choice. For example, Visual Studio for windows
.NET, Eclipse, NetWeaver, JDeveloper or IntelliJ for Java, or 3270 (emulators), IBM RDZ, Compuware TOPAZ for main-
frames. Mostly, those IDEs are also integrated with popular and well-accepted version control repositories, such as CVS,
Subversion or Git. IKAN ALM complements the developer's IDE and offers the following main services:

7Bridging development and operations

DevOps solutions for diverse environments
In the following paragraphs, we will briefly describe three possible DevOps solutions: mainframe, distributed and
non-standard environments. All three share automation of builds and deployments, improved traceability and enhanced
communication between all stakeholders, which are the fundamentals of a DevOps way of working.

IKAN ALM and mainframe

A standard development process on mainframe looks
similar to the one below:

Requirements and Issue Tracking
Application requirements and issues are stored in
Collabnet’s Teamforge, BMC’s Remedy or Atlassian’s
JIRA, …

Development
Mainframe developers use to work with 3270 screens and
store their code in mainframe PDSs (Partitioned Data
Sets) instead of in standard Windows directories. In a
PDS you can’t version your files or members. That is why
library management systems like Librarian or Panvalet,
and, later on, more sophisticated systems with addi-
tional functionality like CA’s Endevor or Serena’s Change
Man, where developed.

Nowadays, mainframes are often no longer seen as devel-
opment environments, but mainly as machines able to
cope with massive amounts of data and transactions. A
major challenge is to make them part of today’s new eco-
system where distributed environments and mobile play
an important role.

Another difficulty for the mainframe is to find young grad-
uates that still want to code using a 3270 terminal. That is
why companies like Compuware and IBM have refreshed
the mainframe development IDEs and offer TOPAZ and
RDZ respectively. Those IDEs are Eclipse-based envi-
ronments with a lot of productivity enhancements for
developers and which are attractive for young graduates.

Versioning
Once the development is done, developers “commit”
their code, just like .NET or Java developers, into a com-
mon version control repository like CVS, Subversion, GIT
or Team Foundation Server (TFS).

At this point, IKAN ALM takes over.

IKAN ALM has developed specific mainframe solution
phases that will allow you to take the development of
the mainframe and to steer the mainframe compile and
deploy process from within IKAN ALM using non main-
frame technology, but serving the mainframe.

Automated build and compile
A sample compile process using the IKAN ALM build
phases, runs like this:

•	From your versioning system, you select the compo-
nents you want to compile in a package.

•	Based on the content of that package, a JCL (com-
pile script for the mainframe) will be automatically
generated.

•	Possible criteria can be: ASSEMBLE, COBOL, PL/1,
SDF2, DB2, CICS, … using IBM or Endevor compilers.

•	That package (sources, copybooks,.. and JCL) is
transmitted to the z/OS mainframe machine and the
compile jobs are submitted.

Once the compile jobs have been executed, the gener-
ated files are loaded and the results are brought back to
IKAN ALM and you move to the next step.

8 Bridging development and operations

Automated deployment to Test or Production
environments
The next step is the deployment to a Test or Production
environment.

During the deployment you can, if required, recompile or
apply the necessary rules, such as specifying the correct
DB2 database or CICS system or Debugger, needed to run
in your test or production environments.

The process is similar to the compile process:

•	The package (the load modules and associated list-
ings, dbrms and plans) is transmitted to the z/OS
mainframe machine and the jobs are submitted for
updating Binds, Cics Phasein or Debugger, or for man-
aging other specific objects.

•	Once the jobs have been executed, the results are
brought back to IKAN ALM.

Enhanced communication between all stake-
holders
Pre- or post-approvals can be set on Test and Production
levels. Those approvals enable a verification moment
before or after the execution of the Level Request to Test
or Production. On top of that, notifications can be sent
out to the people involved.

This enhances the communication between the differ-
ent stakeholders and improves traceability and quality
control.

IKAN ALM itself is a Java application and IKAN ALM’s
development process is Agile and DevOps-based.

As an example, we refer to ourselves: all IKAN ALM devel-
opment and release management is done using our own
IKAN ALM solution.

Development, Issue Tracking and Versioning
A standard Java development environment could look
like this: an Eclipse-based IDE for development, Atlassian
JIRA for requirements gathering, sprint and release plan-
ning, and Subversion or GIT as version control repository.

Once the development is done and the code has been
versioned, IKAN ALM will take care of automating the
build and deploy processes ensuring a reliable, con-
trolled and fast delivery of your applications.

Let's take as an example our own internal IKAN ALM
lifecycle which contains a Build process and processes
ensuring the deployment to Test and Production
environments.

Automated build
The "Build" is not just “compiling the source code”, it is
a process that covers all the steps required to create a
"deliverable" of our software. In the Java world, this typ-
ically includes:

•	Generating and/or compiling sources.
•	Compiling test sources.
•	Executing tests, e.g., unit tests, integration tests, …
•	Packaging (into jar, war, ejb-jar, ear).
•	Running health checks (using static analyzers like

Checkstyle, Findbugs, PMD, test coverage, etc.).
•	Generating reports.

Best Build practices in a DevOps environment require
that all those steps are fully automated and run auto-
matically and continuously. That is known as Continuous
Integration, what we apply.

IKAN ALM and distributed
development

9Bridging development and operations

Using the IKAN ALM solution, this can be easily achieved
by setting up the lifecycle and by defining the Build envi-
ronment within that lifecycle using the IKAN ALM Phases.
Those phases will take care of compile the code, running
tests, creating the jars and wars, running health checks
and much more.

Automated deployment to Test and Production
environments
The next step, the deployment of the Java application, can
be a stressful and long process. Errors during the deploy-
ment process will not only impact the Development and
Operations department, but also the business side as
failing and time consuming or unpredictable deployment
processes result in a longer time-to-market and a bad
perception of the software quality.

Sound Deployment practices include- amongst others:

•	Support (your) best practices
•	Middleware support
•	Cross-platform support.
•	Role-based security.
•	Open architecture.
•	Logging of deployment activities

Automating this process does not only speed up the
deployment process. The deployments are more pre-
dictable, controllable and reliable, which leads to saving
time and money.

To automate the deployment process, we use dedi-
cated parameter-driven phases to set up the Test and
Production environments. Those phases will automati-
cally execute the deployment of the code and update the
databases. Basically, we just need to adapt the parame-
ters used for our test or production environment.

Enhanced communication between all stake-
holders
An important functionality to improve the commu-
nication between the dif ferent stakeholders are
pre- or post-approvals. Such approvals enable a ver-
ification moment before or after the execution of the
deployment to the Test or Production environment. On
top of that, notifications can be sent out to the people
involved. This enhances the communication between
all stakeholders and improves traceability and quality
control.

Through the approvals, both project managers, develop-
ers, marketing and management are kept informed of the
actual status of the builds and deployments.

IKAN ALM not only serves the standard development
environments. It also complements less commonly used
development environments, like for example Oracle Data
Integrator (ODI), which is Oracle’s data extraction, trans-
formation and data load tool.

Specifically for ODI, we offer a versioning component and
dedicated solution phases for the ODI Build and Deploy
processes.

Development
In an ODI environment, development is usually done
using ODI Studio. The following important steps are ver-
sioning the developed code and automating the build
and deploy processes.

Versioning
A versioning component (VCR4ODI) has been developed
in collaboration with our partner D&T who is specialized
in ODI.

VCR4ODI is the link between ODI Studio and Subversion.
When committing ODI objects to Subversion, VCR4ODI
creates a file for each object and a second file with the
dependencies for that object. The restore operation
can just restore the object itself or the object with all
its dependencies. As such, VCR4ODI manages the ODI
objects dependencies.

Thanks to an advanced locking mechanism, VCR4ODI
also provides support for concurrent development and
will send out warnings if an object, or objects, are locked
by another user.

IKAN ALM and a non-standard
environment

10 Bridging development and operations

In its latest release of ODI (release 12), Oracle has also
added a versioning component. The IKAN ALM ODI
Solution Phases will not only work with our own version-
ing component, ODI customers may also use Oracle's
new versioning component.

Once the code has been developed and correctly ver-
sioned, IKAN ALM will take care of the Build and Deploy
processes. Those processes can be fully automated using
the dedicated ODI Solution Phases.

Automated Build and Deploy phases
The ODI Build phase will collect the ODI objects and
their dependencies from Subversion, will create a re-
lease and will put that release in an archive.

When deploying to a Test or Production environment, the
customer has the choice to deploy development objects
and/or so- called ODI scenarios.

Other Oracle environments supported
Next to ODI a customer can easily add other Oracle devel-
opment environments for building and deploying Oracle
applications, such as OWB or Fusion Middleware.

Enhanced communication between all stake-
holders
Just as for the mainframe and distributed environments,
IKAN ALM will also improve the communication between
all stakeholders using approvals and notifications.

The benefits of implementing DevOps
An integrated ALM/DevOps solution brings a bunch of advantages for the company as a whole. Within that company,
every stakeholder will also experience significant time and money savings. It goes without saying that productivity gains
for one stakeholder have an impact on the other stakeholders and finally on the entire company.

The benefits for an organization as a whole fall down in two categories.

Tangible (direct financial impact)

•	Improved cost and budget management ability

•	Reduced time spent to build and deploy
applications in production

•	Improved time-to-market

Intangible (more difficult to make tangible)

•	Improved release consistency and quality
•	Enhanced service to customers
•	Timeline improvement of application releases
•	Less human mistakes
•	Ability to control the development process at any moment
•	Maximization of stakeholder satisfaction
•	Optimized collaboration between teams
•	Creation of an Agile IT environment

11Bridging development and operations

If we look at the benefits for each of the stakeholders, we can distinguish four important elements:
requirements, versioning, build and deploy. The requirement phase can mainly be linked to the business
analysts, the versioning benefits are significant for developers, IT managers and the communication and
collaboration through the team, the build benefits are mainly for the release managers and the deploy
benefits are mainly applicable for the deployment engineers.

Requirements (Business analysts)

•		Better interpretation of requirements
•		Visibility and traceability between requirements,

tasks, related code and deployments
•		Associated client and business collateral with each

requirement, including emails, documents, graphics
and other related information

•		Real-time project status tracking
•		Smoother communication and coordination
•		Software solution accommodates real business need

Automated Deploy (Deployment engineers)

•		Earlier and more frequent feedback from testers &
end-users

•		Less human errors
•		Significantly increased user confidence
•		Creation of an Agile development environment
•		Accelerated time-to-market
•		Deployment phase is not dependent on one person

anymore, more persons can deploy (developers, tes-
ters, users etc.)

•		Transparency and accountability by centralized deploy
repository

•		Smoother communication and coordination
•		Increased flexibility in resource needs and planning
•	Less downtimes
•	Less time-consuming

Versioning (Developers)

•		Imposes a standard way of working for the entire team
•		Allows traceability, promotes accountability and

makes it easier to find the right person to solve a
problem

•		Quickly generate of a list of the changes made, mak-
ing it easier to provide the information on what has
changed, and why, from version to version

•		No time wasted on old code
•		Enhanced team collaboration and communication
•		Allows a rollback to earlier versions
•		Allows to deliver revisions, updates and cross-platform

versions

Automated Build (Release managers)

•		Significantly improves the quality of your product
•		Minimizes the number of ‘bad builds’
•		Accelerates the compile and link processing
•		Eliminates redundant tasks
•		Eliminates dependencies on key personnel
•		Saves history of builds and releases in order to investi-

gate issues
•		Minimizes integration risk
•	Less time-consuming

12 Bridging development and operations

Summary
IKAN ALM can be used as an enterprise-wide solution for
DevOps, covering any environment or platform. With one
and the same platform, mainframes, Windows or Unix
(Linux) environments can be managed.

It comes with standard build and deploy phases for
many environments. Implementing those phases is just
a question of collecting and configuring the required
parameters, such as paths, user IDs and passwords, to
obtain fully automated processes.

The only key questions to answer are:

•		Can the code be versioned? or is it already versioned?
•		What are the company’s building and deployment

standards?
•		What life cycle do you use?

Conclusion
The positive outcome of an ALM solution on an organization is rather impressive.
Not only the organization as such benefits, each stakeholder will experience his own
benefits.

A uniform, standards-based ALM / DevOps solution like IKAN ALM doesn’t only
enforce your processes, it also makes sure that the process is repeatable, reliable and
documented.

It will free your key people of repetitive, less interesting tasks. The size of your team
does not matter, both small and large teams can benefit. Of course, the larger the team,
the greater the benefits.

Gartner mentions three principal values that can be expected from adopting ALM:

•	Enhanced management transparency & visibility
•	Effective execution of challenging processes
•	Better results for the business.

ALM and DevOps are hot topics, there is already a lot of literature about these topics out there. In our
appendix you will find a list of industry expert quotes.

13Bridging development and operations

For more information
For more information about IKAN ALM and how we can help you to achieve DevOps within your organization, refer to:

IKAN ALM architecture:
http://www.ikanalm.com/whitepapers/IKAN_ALM_Architecture.pdf

IKAN ALM Phases concept:
http://www.ikanalm.com/documents/HowToALM%205.6_UseAndDevelopPhases.pdf

More information on how IKAN ALM works with IBM mainframe can be found here:

Modern mainframe development:
http://www.ikanalm.com/whitepapers/Modern_mainframe_development_and_ALM.pdf

IKAN ALM and the mainframe:
http://www.ikanalm.com/whitepapers/Integrating_IKAN_ALM_and_Mainframe.pdf

14 Bridging development and operations

Appendix: Expert opinions
ALM increases team collaboration and reduces cycle time by 70%
(Case study: AIG insurance group leverages ALM to attain IT performance architecture advantage, Zdnet.com, D. Gardner interview)

With all these collaboration and reporting improvements, daily tasks completion rates have risen by 20%
(Case study Lac Viet Computing Corp)

The completed software projects on time double
(Case study Lac Viet Computing Corp)

ALM increases the productivity of developers by 50%
(Case study Société GRICS)

ALM reduces deployment resources by 50%
(ALM summit 2013, M. Uppal and E. Sher for a large healthcare organization BUPA)

Entire team productivity increases with 30%
(Forrester report, J.W. Lipsitz and M. Evangelista, 2013)

ALM increases the number of weekly deployments by 300%
(ALM summit 2013, M. Uppal and E. Sher for a large healthcare organization BUPA)

ALM increases the number of deployed environments by >200%
(ALM summit 2013, M. Uppal and E. Sher for a large healthcare organization BUPA)

ALM reduces the deployment resources by 50%
(ALM summit 2013, M. Uppal and E. Sher for a large healthcare organization BUPA)

ALM doubles the functionality of the delivered software
(ALM summit 2013, D. Fletcher and C. Remillard)

ALM increases test coverage by 30%
(Case study thetrainline.com, thoughtworks)

ALM improves time-to-market with 50%
(Case study thetrainline.com, Thoughtworks)

ALM triples the values for the customers
(ALM summit 2013, D. Fletcher and C. Remillard)

ALM and the increased visibility ensures an increase of quality by 25% and decrease of development time by 10% to 20%
(Case study Comet Solutions Inc.)

37% faster delivering their software to market
(QSM Associates, The agile impact report, 2008)

15Bridging development and operations

According to Forrester an ALM investment repays itself after 3 to 6 months
(Forrester report , J.W. Lipsitz and M. Evangelista, 2013)

On average the deployment time shrinks from 2 hours to 10 minutes and can be done by 1 person instead of a team of
release managers
(ALM summit 2013, M. Brittain)

IKAN Development (Belgium)
Kardinaal Mercierplein 2
2800 Mechelen, Belgium

Tel. +32 15 797306

IKAN Development (France)
3, Rue du Général De Gaulle

28700 Aunay-Sous-Auneau, France
Tél: +33 2 37 25 31 22

info@ikan.be
www.ikan.be

© Copyright 2016 IKAN Development N.V.

The IKAN Development and IKAN ALM logos and names and all other IKAN product or service names are
trademarks of IKAN Development N.V. All other trademarks are property of their respective owners. No
part of this document may be reproduced or transmitted in any form or by any means, electronically
or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

