
Microsoft Certified: Azure Data Engineer Associate – 

Skills Measured 

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we 

assess that skill. This list is not definitive or exhaustive. 

NOTE: Most questions cover features that are General Availability (GA). The exam may contain 

questions on Preview features, if those features are commonly used. 

Exam DP-203: Data Engineering on Microsoft Azure 

Design and Implement Data Storage (40-45%) 

Design a data storage structure 

 design an Azure Data Lake solution 

 recommend file types for storage 

 recommend file types for analytical queries 

 design for efficient querying 

 design for data pruning 

 design a folder structure that represents the levels of data transformation 

 design a distribution strategy 

 design a data archiving solution 

Design a partition strategy 

 design a partition strategy for files 

 design a partition strategy for analytical workloads 

 design a partition strategy for efficiency/performance 

 design a partition strategy for Azure Synapse Analytics 

 identify when partitioning is needed in Azure Data Lake Storage Gen2 

Design the serving layer 

 design star schemas 

 design slowly changing dimensions 

 design a dimensional hierarchy 

 design a solution for temporal data 

 design for incremental loading 

 design analytical stores 

 design metastores in Azure Synapse Analytics and Azure Databricks 

Implement physical data storage structures 



 implement compression 

 implement partitioning 

 implement sharding 

 implement different table geometries with Azure Synapse Analytics pools 

 implement data redundancy 

 implement distributions 

 implement data archiving 

Implement logical data structures 

 build a temporal data solution 

 build a slowly changing dimension 

 build a logical folder structure 

 build external tables 

 implement file and folder structures for efficient querying and data pruning 

Implement the serving layer 

 deliver data in a relational star schema 

 deliver data in Parquet files 

 maintain metadata 

 implement a dimensional hierarchy 

Design and Develop Data Processing (25-30%) 

Ingest and transform data 

 transform data by using Apache Spark 

 transform data by using Transact-SQL 

 transform data by using Data Factory 

 transform data by using Azure Synapse Pipelines 

 transform data by using Stream Analytics 

 cleanse data 

 split data 

 shred JSON 

 encode and decode data 

 configure error handling for the transformation 

 normalize and denormalize values 

 transform data by using Scala 

 perform data exploratory analysis 

Design and develop a batch processing solution 



 develop batch processing solutions by using Data Factory, Data Lake, Spark, Azure 

Synapse Pipelines, PolyBase, and Azure Databricks 

 create data pipelines 

 design and implement incremental data loads 

 design and develop slowly changing dimensions 

 handle security and compliance requirements 

 scale resources 

 configure the batch size 

 design and create tests for data pipelines 

 integrate Jupyter/IPython notebooks into a data pipeline 

 handle duplicate data 

 handle missing data 

 handle late-arriving data 

 upsert data 

 regress to a previous state 

 design and configure exception handling 

 configure batch retention 

 design a batch processing solution 

 debug Spark jobs by using the Spark UI 

Design and develop a stream processing solution 

 develop a stream processing solution by using Stream Analytics, Azure Databricks, and 

Azure Event Hubs 

 process data by using Spark structured streaming 

 monitor for performance and functional regressions 

 design and create windowed aggregates 

 handle schema drift 

 process time series data 

 process across partitions 

 process within one partition 

 configure checkpoints/watermarking during processing 

 scale resources 

 design and create tests for data pipelines 

 optimize pipelines for analytical or transactional purposes 

 handle interruptions 

 design and configure exception handling 

 upsert data 

 replay archived stream data 

 design a stream processing solution 

Manage batches and pipelines 

 trigger batches 



 handle failed batch loads 

 validate batch loads 

 manage data pipelines in Data Factory/Synapse Pipelines 

 schedule data pipelines in Data Factory/Synapse Pipelines 

 implement version control for pipeline artifacts 

 manage Spark jobs in a pipeline 

Design and Implement Data Security (10-15%) 

Design security for data policies and standards 

 design data encryption for data at rest and in transit 

 design a data auditing strategy 

 design a data masking strategy 

 design for data privacy 

 design a data retention policy 

 design to purge data based on business requirements 

 design Azure role-based access control (Azure RBAC) and POSIX-like Access Control List 

(ACL) for Data Lake Storage Gen2 

 design row-level and column-level security 

Implement data security 

 implement data masking 

 encrypt data at rest and in motion 

 implement row-level and column-level security 

 implement Azure RBAC 

 implement POSIX-like ACLs for Data Lake Storage Gen2 

 implement a data retention policy 

 implement a data auditing strategy 

 manage identities, keys, and secrets across different data platform technologies 

 implement secure endpoints (private and public) 

 implement resource tokens in Azure Databricks 

 load a DataFrame with sensitive information 

 write encrypted data to tables or Parquet files 

 manage sensitive information 

Monitor and Optimize Data Storage and Data Processing (10-15%) 

Monitor data storage and data processing 

 implement logging used by Azure Monitor 

 configure monitoring services 

 measure performance of data movement 



 monitor and update statistics about data across a system 

 monitor data pipeline performance 

 measure query performance 

 monitor cluster performance 

 understand custom logging options 

 schedule and monitor pipeline tests 

 interpret Azure Monitor metrics and logs 

 interpret a Spark directed acyclic graph (DAG) 

Optimize and troubleshoot data storage and data processing 

 compact small files 

 rewrite user-defined functions (UDFs) 

 handle skew in data 

 handle data spill 

 tune shuffle partitions 

 find shuffling in a pipeline 

 optimize resource management 

 tune queries by using indexers 

 tune queries by using cache 

 optimize pipelines for analytical or transactional purposes 

 optimize pipeline for descriptive versus analytical workloads 

 troubleshoot a failed spark job 

 troubleshoot a failed pipeline run 


