
“It is not science to build fast software 
on over-scaled hardware, but to build 
fast software on available resources”, 

Peter Čapkovič, CTO of Instarea

paper

te
Whi



Introducing TellStoryDB
Along with enormous increase in data volume, IT companies seek new possi-
bilities of effective data processing. Especially, queries with real-time or near 
real-time responses in context of big data are super expensive or hardly pos-
sible to achieve with standard database systems and sometimes even various 
specialized noSql solutions. 

Analytical Specialization
In Instarea we work with big telco data what makes us challenged everyday with 
optimal approaches to manipulation with massive datasets. This project started 
as a reaction to our needs for fast querying over long tables filled with event 
records. So in the first stage, the main focus of TellStoryDB is to query a single 
flat and huge table in unprecedented fast and effective way. This approach will 
find its place in use-cases linked to repetitive querying over e.g. telco events 
data (counting number of sim cards in certain area with certain criteria), web logs 
(computing funnel analysis of certain website visitors), finance data, etc.

TellStoryDB has utilized new hardware opportunities 
and it has integrated modern graphic cards that 
enable fast and efficient processing of vast amount of 
data. And therefore, even billions of records could be 
queried in milliseconds.



Basic Concepts  
of Superb Performance
TellStory uses two concepts that love each other and together they bring su-
perb performance.

Utilization of Modern Hardware
Since 2007, when NVIDIA launched the CUDA Toolkit, using graphic process-
ing units (GPUs) for high performance and scientific computing has become 
increasingly popular. This moved focus of graphics cards vendors from visual-
ization towards more general computing. General processing graphics pro-
cessing units (GPGPUs) enable highly parallelized processing of data thanks 
to hundreds and even thousands of cores doing work in single GPU. Although 
these cores can handle simpler logic than those of CPUs, their high number 
in single unit creates a powerful army. And in result it can process large data 
vectors much faster than any CPU.

Rediscovery of Columnar Data 
Storage
Utilizing GPUs computation power requires different approach to storing data. 
The most suitable database architecture that works well with parallel processing 
is columnar storage. In contrast to conventional relational databases which store 
data in row-based format, columnar databases store data in separate columns.
In context of parallel processing, GPUs love long vectors of the same data type 

FIgure 1: GPUs have thousands of arithmetic logic units (ALUs) in one piece of hardware.



as all values are next to each other. In addition to this, data transfers are sig-
nificantly reduced as only relevant columns are loaded and used for process-
ing. Also, column-oriented databases are more suitable for horizontal scaling, 
enabling use of low-cost hardware to work in terabytes of data. 

Architectural Insight
Data Flow Within System

Datasets are compressed and persisted on disc storage, but also cached in 
both CPU memory and GPU memory to minimize latency. GPU processing 
needs data to be present in its local memory (GPU RAM) and this results in main 
limitation of GPU computing – moving data between CPU and GPU memory.

TellStoryDB reduces this transfer time using three strategies. Firstly, when a 
query is hit, TellStoryDB analyzes which columns are relevant and only those 
are copied to GPU RAM. Secondly, thanks to compression of data, much lower 
volume needs to be transferred. Finally, data are kept in GPU RAM as late as 
possible to avoid duplicate transfers.

FIgure 2: Data flow from disc storage, through main memory RAM to GPU RAM.

This concept is decades of years old, but it did not find 
its place in relational databases that were heavily used 
until era of big data started. Columnar databases 
have become popular mostly for analytical workloads 
on big datasets.



When data are transferred, GPU decompresses it and run functions on top of 
the data including various filters, aggregations, etc. At this point GPU can finally 
show how big beast it is.

GPU Caching
Especially, in analytics workloads it is very common to use one dataset more 
than once in a short period of time. Once data are transferred to GPU RAM it 
should remain there for repeated use. This is caching at GPU. Of course, GPU 
RAM has not unlimited capacity (usually ~16 GB) and we need to wisely man-
age memory when using various datasets. Thanks to caching, results could be 
expected in 10x shorter time when queried the same dataset.

Data Compression  
[Under Development]
As mentioned above, data are internally organized in columnar-wise format. 
One great advantage of columnar storage is that columns could be very effi-
ciently compressed. TellStoryDB uses compression to reduce data volume on 
disk, but also across the whole hierarchy of memory. A compression scheme 
that is used is rather lightweight in order to provide maximum decompres-
sion speed. Therefore, data could be kept compressed even in GPU memory 
sparing space in GPU RAM that is naturally much smaller. And thus columns are 
decompressed only when necessary.

Software Toolkit Used
The database layer was implemented in C++ 17 and extension to this are CUDA 
kernels for computation at NVIDIA graphics cards. The  Console is written in  
C# and therefor it requires .NET runtime environment, 

Key Capabilities
SQL Language
In the world of databases, SQL is a common interface that almost every data 
developer or analyst knows and also many tools use it to communicate with 
persistence layer. TellStoryDB provides basic SQL statements to select and 
manipulate data.



Geospatial Functions
Based on our experience with telco data we added geospatial functionality to 
work with points and polygons. Currently, TellStoryDB supports inputs in WKT 
format and provides three main functions – CONTAINS (check whether point is 
inside polygon), INTERSECTION (new polygon as intersection of two polygons), 
UNION (new polygon as union of two polygons).

In-Memory
Data are preloaded into RAM at start. This way is latency decreased to min-
imum. Standard on-demand loading from disk is planned for next release in 
December 2019.

Indexing
TellStoryDB currently provides single clustered index. Similarly, to traditional 
databases, data are sorted according to chosen columns. Slower insert in turn 
results in magnitude of order faster querying.

Multiplatform
Big data world happens on Unix systems. We know that, but we also do not 
want to forget about companies that run Windows.

Scalability
Multiple GPUs within a single server node are detected automatically and the load 
is balanced also automatically. It is possible to use up to 8 Tesla GPUs in a single 
machine. Such machine is comparable to cluster of 20 high-end CPU nodes.

Connectors to Other Tools
In order to integrate the database into the processing pipeline we provide 
currently C# and C++ connectors and other connectors (including ODBC) are 
planned for next release in December 2019.


