BLUJEIHAN

SHANGHAI 201¢

Betrayal of Reputation

Trusting the Untrustable Hardware and Software with Reputation

Seunghun Han 29 May 2019

Senior Security Researcher at National Security Research Institute

Who Am I?

Review Board Member of KIMCHICON

- Speaker at

- USENIX Security 2018

- Black Hat Asia 2017 - 2019
=g - HITBSecConf 2016 - 2017
Rl | -BeVX and KIMCHICON 2018

- Author of "64-bit multi-core OS principles and structure, Vol. 1 and Vol. 2)
- ak.a kkamagui YW @kkamagui1

Goal of This Talk

- Introduce a stereotype about reputation
- REPUTATION does not mean TRUSTWORTHINESS!
- Unfortunately, we easily trust something because of REPUTATION!

- Present the case that the reputation betrays you
- BIOS/UEFI firmware and Trusted Platform Module (TPM) were made
by REPUTABLE companies!
- However, | found two vulnerabilities, CVE-2017-16837 and CVE-2018-
6622, that can subvert the TPM

- Present countermeasures and what we should do
- Trust nothing with REPUTATION and check everything for yourself!

Previous Works

bibdkhat

ASIA 2018

MARCH 20-23, 2018

MARINA BAY SANDS / SINGARPORE

é,usenlx

A Bad Dream: Subverting Trusted Platform

| Don't Want to Sleep Tonight: Module While You Afe Steaping
Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim,
subve rting Intel TXT with s3 SIeep National Security Research Institute

https://www.usenix.org/conference/usenixsecurity18/presentation/han

Seunghun Han, J
(hanseunghun || park
. b Proceedings of the

Wook Shin, Junghwan Ki ® .
(wshin || ultract || k bl k h t Symposium.
¥ #BHASIA / @Bla ac a ’ 0
ASIA 2019

MARCH 26—-29, 20139
MARINA BAY SANDS / SINGAPORE

bn access to the Proceedings of the

Finally’ I Can Sleep Tonight: th.USENIXSecuritySymposium
Catchmg Sleep Mode Vulnerabilities of the TPM with Napper il

Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkqw)@nsr.re.kr

p— 4 LN e ———

Wook Shin, Junghwan Kang, HyoungChun Kim
(wshln || ultract || khche)@nsr.re.kr
R T \ S T

Reputation

IS based on

trust!

We just believe

products

of reputable companies

trustable

Reputable Companies Other Companies
(High Price) (Low Price)

intel) AMDZV (/) 4

Asus UNKNOWN

GIGATE”” _ BRANDS y

for you! \ for presents!

lbls Famamasines

A
AN
LY

FOR THE PRESENTS!

n.l.l_.._L.__.‘
| KNOW WHAT YOU DID

panies

rice)

IDS Y

Iresents!

Trusted Platform Module Library

Part 1: Architecture

Family “2.0”

Level 00 Revision 01.38

Root of Trust for Measurement [EZIEEELE Core RTM Trusted Building Block

9.2.5 Trust Authority

When the|RTM| begins to execute the| CRTM| the entity that may vouch for the correctness of the TBB|is
the entity that created the TBB. For typical systems, this is the platform manufacturer. In other words, the
manufacturer is the authority on what constitutes a valid TBB, and its reputation is what allows someone
to trust a given TBB.

TCG Published
TCG Copyright © TCG 2006-2016

Reputable products

are really

trustable?

Reputable

=

Trustable!

Everyone has a plan,

until they get punched in the mouth.
- Mike Tyson

Everyone has a plan,

until they get punched in the mouth.
- Mike Tyson

Every researcher has a plan,

until they encounter their manager.
- Unknown

\, ~ -
Every researcher has a plan,

until they encounter their manager.
- Unknown

)

Happiness
&
|

[

—

()
|

393

CVE-2017-
16837

Timeline

USENIX)
Security Black Hat Asia
CVE-2018- 3 with Napper
Black Hat g622 (
Asia Y 4 o

usenix

ASSOCIATION

N\

First Encounter

Second Encounter

>
Time
(year)

Happiness

/ Contents - Background

First Encounter

Trusted Computing Group (TCG)

- Defines global industry specifications and standards
- All reputable companies such as Intel, AMD, IBM, HP, Dell, Lenovo,
Microsoft, Cisco, Juniper Networks, and Infineon are members of it

- Is supportive of a hardware root of trust
- Trusted Platform Module (TPM) is the core technology

- TCG technology has been applied to Unified Extensible Firmware

FRUSTED
COMPUTING GROUP*®

Interface (UEFI)

Trusted Computing Base (TCB) of TCG

- Is a collection of software and hardware on a host
platform

- Manages and enforces a security policy of the system

- Is able to prevent itself from being compromised
- The Trusted Platform Module (TPM) helps to ensure that the TCB is
properly instantiated and trustworthy

Trusted Platform Module (TPM) (1)

- Is a tamper-resistant device

- Has own processor, RAM, ROM, and

non-volatile RAM
- It has own state separated from the system

- Provides cryptographic and accumulating measurements

functions

- Measurement values are accumulated to Platform Configuration
Registers (PCR #0~#23)

Trusted Platform Module (TPM) (2)

- Is used to determine the trustworthiness of a system by

investigating the values stored in PCRs
- A local verification or remote attestation can be used

- Is used to limit access to secret data based on specific PCR

values
- "Seal” operation encrypts secret data with the PCRs of the TPM
- "Unseal” operation can decrypt the sealed data only if the PCR values
match the specific values

Root of Trust for Measurement (RTM)

- Sends integrity-relevant information (measurements) to

the TPM

- TPM accumulates the measurements to a PCR with the previously
stored value in the PCR

Extend: PCRrew = Hash(PCRod || Measurementnew)
- Is the CPU controlled by Core RTM (CRTM)

- The CRTM is the first set of instructions when a new chain of trust is
established

Static and Dynamic RTM (SRTM and DRTM)

- SRTM is started by static CRTM (S-CRTM) when the host
platform starts at POWER-ON or RESTART

- DRTM is started by dynamic CRTM (D-CRTM) at runtime
WITHOUT platform RESET

- They extend measurements (hashes) of components to
PCRs BEFORE passing control to them

Static Root of Trust for Measurement (SRTM)
BIOS/UEFI firmware

BIOS/UEF] User
Applications

S-CRTM Bootloader Kernel

Power On/

Restart — — » : Extend a hash of next code to the TPM
— : Execute next code

Dynamic Root of Trust for Measurement (DRTM)

(Intel Trusted Execution Technology)

Untrusted D-CRTM Bootloader User
Code (SINIT, DCE) Kernel Applications

—
—-—
—
-
-—
—-—
—-—
—
-
—

-
-
-
—-—

DL Event

DLME: Dynamically Launched Measured Environment
DL Event : Dynamic Launch Event
DCE: DRTM Configuration Environment

Bank/Algorithm: TPM ALG SHA1l
ea 25 dc 86 55 4d 94 b9 4a a5 bc 73
3b Qe bf 2f 83 74 29 9a 5b 2b df le
3b Qe bf 2f 83 74 29 9a 5b 2b df le
3b @e bf 2f 83 74 29 9a 5b 2b df le
do 48 a8 bl 09 2c 79 b8 69 eb6 7d d7
c6 1f 16 b2 22 b8 006 79 62 23 8a bl
3b Qe bf 2f 83 74 29 9a 5b 2b df le
33 6f a7 bc Ge ab e3 77 8f cf ff cd
ea d3 c3 04 1f 26 13 63 3f f8 11 c9
c8 08 06 d3 bO ce 45 90 31 ec 6b 5a
97 8b 9c 73 3f fa b2 df 9d c9 d9 c3

(%) D
ga SRTM .
(%) J)

00 00 00 0O 0O 00 0O OO 0O 00 00 00 00
00 00 00 0O 00 00 OO 0O 00 00 00 00 00

96 cf 4d 02 18 O0f 15 6¢ 1c a3 45 1b bd
56 a5 ad 09 da 8c Of Pe 5e f7 25 da 22
PO OO0 PO OO PO OO PO PO 0O 0O 00 00 00

PCR Protection

- They MUST NOT be reset by disallowed operations even

though an attacker gains a root privilege!

- Static PCRs (PCR #0~#15) can be reset only if the host resets
- Dynamic PCRs (PCR #17~#22) can be reset only if the host initializes
the DRTM

- If PCRs are reset by attackers, they can reproduce specific
PCR values by replaying hashes

- They can steal the secret and deceive the local and remote
verification

We trust all these mechanisms
because of REPUTATION!

T
% 3‘?
k//

Fortunately, they worked!

{?anisms
JON!

P rorked!

-0 rt% Ybu BETRAY ME!

UNTIL | PUBLISHED
THE VULNERABILITIES!

|

Ty
% fw
N

Happiness

Contents - CVE-2017-16837

/

CVE-2017- BlackHat

16837

Intel Trusted Execution Environment (TXT)

- Is the DRTM technology of TCG specification
- Intel just uses their own terminologies
- ex) DCE = Secure Initialization Authenticated Code Module (SINIT ACM)
DLME = Measured Launched Environment (MLE)

- Has a special command (SENTER and SEXIT) to enter

trustworthy state and exit from it

- SENTER checks if SINIT ACM has a valid signature
- Intel publishes SINIT ACM on the website

Trusted Boot (tBoot)

- Is a reference implementation of Intel TXT
- It is an open source project (https://sourceforge.net/projects/tboot/)
- It has been included many Linux distros such as RedHat, SUSE, and
Ubuntu

- Can verify OS and Virtual Machine Monitor (VMM)

- It measures OS components and stores hashes to the TPM

- Measured results in PCRs of the TPM can be verified by a remote
attestation server such as Intel Open CIT

- It Is typically used in server environments

Boot Process of tBoot

CPU]
—» : Execution - =% : Measurement
Microcode
A |
SENTER ,
(DL event) I
|| .
I tBoot (DLME) Attestation
| \ 4
BIOS/UEFI Pre- : SINIT Post- Kernel Remote
CRTM > Code —»| GRUB | Launch | ACM P Launch —p »{ Attestation
Code I | (DCE) Code initrd Tool
| | . | |
I 1 ' |]
PCR #17~
I I I | |
. | PCR #17 :. ; #19 ;
______________ I - -
|
| TPM
4 4

Static PCRs (PCR#0-15) Dynamic PCRs (PCR#17-22)

. (7
Boot process is ",
perfect!

How about
sleep process?

Advanced Configuration and Power Interface (ACPI)
and Sleeping States

- Cut off the power of...
- SO: Normal, no context is lost
- S1: Standby, the CPU cache is lost
- S2: Standby, the CPU is POWERED OFF
- S3: Suspend, CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

TPM is also POWERED OFF!

Waking Up Process of the DRTM

S-RTM OS Present Environment D=RTivir-Confi i Remediation

Environment
No Gap (Trusted Code and Platform State) ReSta rt D RT M

2 ==
Q E 52 Remediation
i 0
Valcated DLME Validated || & 2/
.4 Resume Provided DCE -+ DCE 1« Success’? S
Resume Code Preamble

Code
‘Error Cod

Resume

Measure
Ag a i n ! Shutéi:own P%\A;fer

Platform

Code is measured again while waking up!

<TCG D-RTM Architecture Specification>

i

P
’

]

Sleep Process with tBoot

Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs
- seal_post_k_state() 2 g _tpm->seal()

Save Static PCRs(0~16)
- tpm->save_state()

Shutdown Intel TXT
- txt_shutdown()

Sleep. Power off the CPU and the TPM!

- shutdown_system()

Wake Up, Restore Static PCRs, and Resume tBoot
- Real Mode, Single CPU

Launch MLE again and then, Unseal S3 key and MAC with P-Launch
PCRs

- begin_launch() - txt_s3_launch_environment()
- post_launch() 2 s3_launch() - verify_integrity() 2 g_tpm->unseal()

Extend PCRs and Resume Kernel
- verify_integrity() > extends_pcrs() 2> g_tpm 9 EXtend ()

- s3 launch()-> prot to real()

il
i

AT
{
=

]

Sleep Process with tBoot

Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs
- seal_post_k_state() 2 g _tpm->seal()
Save Static PCRs(0~16)
- tpm->save_state()
Shutdown Intel TXT .
- txt_shutdown() .
. Sleep. Power off the CPU and the TPM! G o o

- shutdown_system() '

Wake Up, Restore Static PCRs, and Resi

- Real Mode, Single CPU .
Launch MLE again and then, Unseal S3 - r
PCRs el e, S04

- begin_launch() - txt_s3_launch_environienyy
- post_launch() - s3_launch() - verify_integrity() > g_t >unseal()

Extend PCRs and Resume Kernel
- verify_integrity() > extends_pcrs() 2> g_tpm éexltend ()

- s3 launch()-> prot to real()

“Lost Pointer” Vulnerability
(CVE-2017-16837)

Multiboot Header

_mle _start

Measured by Intel TXT!

00840234
00840238
0084023c
0084023d
00840240
00840260
00840264
00840268
0084026¢C
00840270
00840280
008402c0
00840460

g_tpm
num_1lines
cursor_y
cUrsor x Initialized Data
g_saved_mtrrs (.data) o
g_sinit struct tpm_if *g_tpm ission t.pmlg'_gr::-.t._;::!.rzlqci:;::::_fjf:a:‘mis5i-::-n,
g_using_da struct tpm_if tpm_12_if
g_elog_2_1
g_elog_2
g_elog Uninitialized Data
g_rsdp (.bss)
tpm_12_if
tpm_20_if

struct tpm if tpm 12 if = |{

= tpml2 1r

“mle_end

.unseal = tpm

fy creation = tpml2 verify creation,

struct tpm_if tpm_20_if

D
d
d
d
d
D
D
d
d
d
D
D
D

.timeout.timeout d

Memory Layout of tBoot

00840234
00840238
0084023c
0084023d
00840240
00840260
00840264
00840268
0084026¢C
00840270
00840280
008402c0
00840460

L e B v B o B o B o N v i w B o R & N & B o B w

“Lost Pointer” Vulnerability
(CVE-2017-16837)

g_tpm
num_1lines
cursor_y
cursor_x
g_saved_mtrrs
g_sinit

g_using_da
g_elog_2_1
g_elog_2
g_elog
g_rsdp
tpm_12_if
tpm_20_if

_mle _start

“mle_end

>

Multiboot Header

Initialized Data
(.data)
struct tpm_if *g_tpm
struct tpm_if tpm_12_if
struct tpm_if tpm_20_if

Uninitialized Data
(.bss)

Measured by Intel TXT!

Memory Layout of tBoot

- Yaeed

YOU BETRAY ME!

Exploit Scenario of the CVE-2017-16837 (1)

BIOS/UEFI
DCE and DLME (tboot) [r======- :
* : (1) Leave normal hashes in event logs
Compromised Software Stack A

5 (2) Extract and calculate the normal hashes

m (3) Store the normal hashes in RAM

(4) Hook function pointers in the DCE and the DLME

Y

Compromised State
(5) Sleep *

(6) Wake up ¢ : (5) Reset the TPM and replay the normal hashes with
Hooked : the hooked functions
DCE and DLME (tboot) [Hesaell =
Compromised Software Stack

Faked State (Normal State)

Exploit Scenario of the CVE-2017-16837 (2)

BIOS/UEFI

<

2 _»”

SS\am.’ .~
Nonce
Abnormal
TPM PCRs >

*Compromised User
tboot . ..
Kernel Application
| 2 ’f’,
: ,/, P
: e f”’
: /', f”’
: /,, /””
’ %
AN : /,, ¢’¢¢
N | ’ R
~ \\ : oI

Exploit Scenario of the CVE-2017-16837 (3)

BIOS/UEFI

L
1o 4

GRUB

—> tboot

»
2 s /

*Compromised

Kernel

Replay Good Hashes

User
Application

Happiness

Contents - CVE-2018-6622
N—
pri e L

USENIX
Security

CVE-2018- JWAj
6622 é’ Po

usenix
SSSSSSSSSSS

DRTM measures code
while waking up!

How about SRTM?

Waking Up Process of the SRTM

(1) Request to
save a state

ON)

(2) Request to (6) Resume OS
enter sleep

ACPI
(BIOS/UEFI)

TPM I~

(5) Request to
restore a state

(3) Sleep (4) Wake up

<TCG PC Client Platform Firmware Profile Specification>

“Grey Area” Vulnerability (1)
(CVE-2018-6622)

(1) Request to ﬂ
save a state | OS
- Zi?gf z’lceteop < >(6) Resume OS
< ACPI
(5) Request to (BIOS/UEFI)

restore a state
(3) Sleep > (4) Wake up

<TCG PC Client Platform Firmware Profile Specification>

“Grey Area” Vulnerability (2)
(CVE-2018-6622)

TPM 2.0 What is the “corrective action”?

If the TPM receives Startup(STATE) that was not preceded by Shutdown(STATE), then there is no state
to restore and the TPM will return TPM_RC VALUE. The CRTM is expected to take corrective action|to

prevent malicious software from manipulating the PCR values such that they would misrepresent the
state of the platform. The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

This means “reset the TPM” j

TPM 1.2

The startup behavior defined by this specification is different than TPM 1.2 with respect to
Startup(STATE). A TPM 1.2 device will enter Failure Mode if no state is available when the TPM

receives Startup(STATE). This is not the case in this specification. It is up to the CRTM to take
corrective action if it the TPM returns TPM_RC_VALUE in response to Startup(STATE).

<Trusted Platform Module Library Part1: Architecture Specification>

a B
| have no iIdea about “corrective action”

wz] | should do nothmg'

If the TPM " — T T . EE—'S no state
to restore and the The CRT

prevent malicious s CR values
state of the platform up(State) a

ThiS m O 7 A ",-‘v.,'\\ »,

on is diff

The startup beha
Startup(STATE). A ure Mode
this spem YOU BETRAY ME!

recelves Startup

D) m P \/ A

oD (o) (AD ASUS GIGABYTE'

“Grey Area” Vulnerability (2)
(CVE-2018-6622)

TPM 2.0 What is the “corrective action”?

If the TPM receives Startup(STATE) that was not preceded by Shutdown(STATE), then there is no state
to restore and the TPM will return TPM_RC VALUE. The CRTM is expected to take corrective action|to

prevent malicious software from manipulating the PCR values such that they would misrepresent the
state of the platform. The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

This means “reset the TPM” j

TPM 1.2

The startup behavior defined by this specification is different than TPM 1.2 with respect to
Startup(STATE). A TPM 1.2 device will enter Failure Mode if no state is available when the TPM

receives Startup(STATE). This is not the case in this specification. It is up to the CRTM to take
corrective action if it the TPM returns TPM_RC_VALUE in response to Startup(STATE).

<Trusted Platform Module Library Part1: Architecture Specification>

Bank/Algorithm: TPM_ALG_SHA1(9x0004)]

PCR_@0: 3d ca ea 25 dc 86 55 4d 94 blBaak Algorithm: TPM ALG SHA1(0©x0004

PCR_O1: b2 a8 3b @e bf 2f 83 74 294 %@@ 00 00 00 00 00 00 00 0O 00 00 00

PCR_02: b2 a8 3b @e bf 2f 83 74 PCR_agf00 00 00 00 00 00 00 00 00 00 00 00

e e D o e 20 7JPCR_02]¥R0 00 00 00 00 00 00 00 00 00 00 00

DR 05: od cx c6 17 16 b 2 b oo S|PCR_03:¥P0 00 00 00 00 00 00 00 00 00 00 60

PCR 06: b2 a8 3b e bf 2f 83 74 29 of PCR_@4: 00 00 60 00 00 60 00 00 60 00 00 60

PCR_07: 4@ 37 33 6f a7 bc @e ab e3 7JPCR_O5: 00 00 00 00 00 00 00 00 00 00 00 00
PCR_06: 00 00 00 00 00 00 00 00 00 00 00 00

PCR_08: 6b Of 47 1f 31 a7 0f e0@ ec
PCR_O7: 00 00 00 00 00 00 00 00 00 00 00 00

PCR_09: 77 67 €9 eb 68 d7 bc e7 7a
PCR_10: 3c 72 6¢c db 57 ba a> @8 @2 8|pp 3. gp PO 0O 00 00 00 00 00 00 00 00 00
PCR_©9: 00 00 00 00

PCR_11: 00 00 00 00 00 00 00 00 00
PCR_10: 00 00 00 00

PCR_12: 00 00 00 00 00 00 00 00 00 0

PCR_13: 00 00 00 00 00 00 00 00 00 0

PCR_14: 00 00 00 00 00 00 00 00 00 ofPCR_11: 00 00 00 00 O CIea rI

PCR_15: 00 00 00 00 00 00 00 00 00 OfPCR 12: 00 0O 0O PO © ®

PCR_16: 00 00 00 00 00 00 00 00 00 PCR_13I 00 00 00 00 ©

PCR_17: ff ff ff ff ff ff ff ff ff .

PCR 18: ff ff ff £f £f ff Ff £f £f PCR_14: 00 00 00 00 00 00 00 00 00 00 00 00

PCR_19: ff ff ff ff ff ff ff ff ff PCR_15: 00 00 00 00 00 00 00 00 00 00 00 00
PCR 16: 00 00 00 00 00 00 V0 VO VO VO 00 00
PCR_17: ff ff ff ff ff ff ff ff ff ff ff ff
PCR_18: ff ff ff £f £f £f £f ff f ff ff ff
PCR_19: ff £f £f £f £f £f £f £f ff ff ff ff

® =Hh =h -h -h hHh$HO OO OO OO L N WS D O \O

PCR_20: ff ff ff ff ff ff ff ff ff

PCR_21: ff ff ff ff ff ff ff ff ff

PCR_22: ff ff ff ff ff ff ff ff ff
PCR_20: ff ff ff ff ff ff ff ff £f ff £f f
PCR_21: ff ff ff ff ff ff ff ff £f ff £f f
PCR 22: ff ff ff ff ff ff ff ff ff ff ff ff

PCR_23: 00 00 00 00 00 00 00 00 00
PCR_23: 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 GO 00 00 00 00 009

Exploit Scenario of the CVE-2018-6622

BIOS/UEFI

Y

Compromised Software Stack

v

Compromised State

(4) Sleep without saving the TPM state ‘

(1) Leave normal hashes in event logs

(2) Extract and calculate the normal hashes

m—
m (3) Store the normal hashes in RAM

(5) Wake up l

Compromised Software Stack

Faked State (Normal State)

<IIII:

(6) Reset the TPM and replay the normal hashes

Happiness

- 10

Contents — “Napper”

Black Hat Asia
with Napper

O
/ N\

2719 Time
\ED)

>

Second Encounter

>

4
S
AN -.QJ "k 3 ’1‘ :3&?“

\

Second Encounter!!!

“Napper”?

- Is a tool that can check the ACPI S3 sleep mode
vulnerability in the TPM
- It Is a bootable USB device based-on Ubuntu 18.04
- It has a kernel module and user-level applications
- Makes the system take a nap and checks

the vulnerability
- The kernel module exploits the grey area vulnerability (CVE-2018-

6622) while sleeping by patching kernel code

- The user-level applications check the TPM status and show a report

“Napper™?

- Is a tool that can check the ACPI S3 sleep mode
vulnerability in the TPM
- It Is a bootable USB device based-on Ubuntu 18.04
- It has a kernel module and user-level applications
- Makes the system take a nap and checks
the vulnerability

CVE-2017-16837 is a software vulnerability!
Upgrade tBoot if the version is lower than v1.9.7

Napper’s Kernel Module (1)

- Patches the tpm_pm_suspend() function in TPM driver
- The function is invoked by kernel while S3 sleep sequence
- The kernel module changes the function to “return 0;"

o~ WNE

i
{

nt tpm_pm_suspend(struct device *dev)

struct tpm_chip *chip = dev_get_drvdata(dev);

struct tpm_cmd_t cmd;
int rc, try;

u8 dummy_hash [TPM_DIGEST_SIZE] = { 0

(chip == NULL)
-ENODEV;

1
2
3
4
5

(chip—>flags & TPM_CHIP_FLAG_ALWAY
9;

(chip->flags & TPM_CHIP_FLAG_TPM2) {
tpm2_shutdown(chip, TPM2_SU_STATE);

9;

i
{

}

nt tpm_pm_suspend(struct device *xdev)

0;

OCoONOULRE WNERE

S
{

Napper’s Kernel Module (2)

tatic int __init napper_init(void)

TEXT_POKE fn_text_poke;
unsigned long tpm_suspend_addr;

// Byte code of "XOR RAX, RAX; RET;"

unsigned char ret_op_code[] = {0x48, 0x31, 0xCO, OxC3};
unsigned char org_op_codelsizeoT(ret_op_code)];

// Find needed functions
fn_text_poke = (TEXT_POKE) kallsyms_lookup_name("text_poke");
tpm_suspend_addr = kallsyms_lookup_name("tpm_pm_suspend");

fn_text_poke((voidx) tpm_suspend_addr, ret_op_code, sizeof(ret_op_code));

return Q;

Napper’s User-Level Applications

- Consist of TPM-related software and launcher software
- | added a command-line tool, "tpm?2_extendpcrs”, to tpm2_tools
- | also made a launcher software for easy-of-use

- Load the kernel module and check the TPM vulnerability
- The launcher loads napper’s kernel module and takes a nap
- It checks if PCRs of the TPM are all ZEROS and extends PCRs
- It gathers and reports the TPM and system information with
tom2_getinfo, dmidecode, and journalctl tools

Napper Live-CD and USB Bootable Device

Ubuntu 18.04

-4 Kernel 4.18.0-15

-4 TPM-related software
- -4 User-level Applications
- Pinguybuilder_5.1-7

\~
~~
—_—
~-———

Napper Live-CD.iso

Napper Live-CD and USB Bootable Device

Ubuntu 18.04
-4 Kernel 418.0-15

Project page:

https:// /kkamagui/napper-for-tpm
d ' I AR A YL l_\'P'P'ITCU'CI'UI o

Pinguybuilder_5.1-7

\~
~~
—_—
~-———

Napper Live-CD.iso

BIOS TPM
Model Status : :
Vendor Version Release Date Manufacturer Vendor String
ASUS American :
Q170M-C Vulnerable Megatrends Inc. 4001 11/09/2018 Infineon (IFX) SLB9665
Dell
Optiplex 7040 Vulnerable Dell 1.11.1 10/10/2018 NTC rls NPCT
Dell
Optiplex 7050 Vulnerable Dell 1.11.0 11/01/2018 NTC rls NPCT
GIGABYTE American :
H170-D3HP Vulnerable Megatrends Inc. F20g 03/09/2018 Infineon (IFX) SLB9665
GIGABYTE American :
0170M-MK Vulnerable Megatrends Inc. F23 04/12/2018 Infineon (IFX) SLB9665
HP American :
Spectre x360 Vulnerable Megatrends Inc. F.24 01/07/2019 Infineon (IFX) SLB9665
Intel MYBDWIi5v.86A.
) Vulnerable Intel 0049.2018. 11/07/2018 Infineon (IFX) SLB9665
NUC5iI5MYHE 1107.1046

Lenovo T480
(20L5A00TKR)

Lenovo

N24ET44W
(1.19)

11/07/2018

Infineon (IFX)

SLB9670

Lenovo T580

Lenovo

N27ET20W
(1.06)

01/22/2018

ST-
Microelectronics

Microsoft
Surface Pro 4

Microsoft
Corporation

108.2439.769

12/07/2018

Infineon (IFX)

SLB9665

Demo

Napper tool

S S e O T i ' I" I"|
," Napper v 1.0 for TPM ,"| o SR
I + | - Ve |
[e z | | ey + |
|| zZ| | | | -==----"] |
I —z LI | | |
|| - | | [/----] ==== o0 | |
|| | /] CO((|
| e AN NS
T e e e i + ' I | Ir"
/) Y A [esssea e +
/ N
/ 0000000000000000 .0. 0000 / \, ===
==000000000000000==.0. 000= / , \--{-D) ,"

Napper v1.0 for checking a TPM vulnerability, CVE-2018-6622
Made by Seunghun Han, https://kkamagui.github.io
Project link: https://github.com/kkamagui/napper-for-tpm

Countermeasures — CVE-2018-6622
(The Grey Area Vulnerability)

1) Disable the ACPI S3 sleep feature in BIOS menu
- Brutal, but simple and effective

2) Revise TPM 2.0 specification to define “corrective action”

in detail and patch BIOS/UEFI firmware

- A long time to revise and apply to the TPM or BIOS/UEFI firmware
- But, fundamental solution!

Check and update your BIOS/UEFI firmware!

Countermeasures — CVE-2017-16837
(The Lost Pointer Vulnerability)

1) Apply my patch to tBoot
- https://sourceforge.net/p/tboot/code/ci/521c58e51eb5be105a2998
3742850e72c44ed80e/

2) Update tBoot to the latest version

Conclusion

- Until now, we have trusted the untrustable hardware and

software with reputation!
- "Reputation” is not “Trustworthiness”
- Trust nothing only with reputation and check everything for yourself

- Napper helps you to check the TPM vulnerability

- Check your system with Napper or visit the project site for the results

- Update your BIOS/UEFI firmware with the latest version

- If there is no patched firmware yet, disable the ACPI S3 sleep feature in
BIOS menu right now!

L UEFIAW

SHANGHAI 201

Betrayal of Reputation:
Trusting the Untrustable Hardware and Software with Reputation

Seunghun Han

hanseunghun@nsr.re.kr
Twitter: Y @kkamaguil
Project: https://github.com/kkamagui/napper-for-tpm

Reference

- Seunghun, H., Wook, S., Jun-Hyeok, P, and HyoungChun K. Finally, | Can Sleep Tonight: Catching Sleep Mode
Vulnerabilities of the TPM with the Napper. Black Hat Asia. 2019.

- Seunghun, H., Wook, S., Jun-Hyeok, P, and HyoungChun K. A Bad Dream: Subverting Trusted Platform Module
While You Are Sleeping. USENIX Security. 2018.

- Seunghun, H., Jun-Hyeok, P, Wook, S., Junghwan, K., and HyoungChun K. / Don't Want to sleep Tonight:
Subverting Intel TXT with S3 Sleep. Black Hat Asia. 2018.

- Trusted Computing Group. TCG D-RTM Architecture. 2013.

- Trusted Computing Group. TCG PC Client Specific Implementation Specification for Conventional BIOS. 2012.

- Intel. Intel Trusted Execution Technology (Intel TXT). 2017.

- Butterworth, J., Kallenberg, C., Kovah, X., and Herzog, A. Problems with the static root of trust for measurement.
Black Hat USA. 2013.

- Wojtczuk, R., and Rutkowska, J. Attacking intel trusted execution technology. Black Hat DC. 2009.

- Wojtczuk, R., Rutkowska, J., and Tereshkin. A. Another way to circumvent Intel trusted execution technology.
Invisible Things Lab. 2009.

- Wojtczuk, R., and Rutkowska, J. Attacking Intel TXT via SINIT code execution hijacking. Invisible Things Lab. 2011.

- Sharkey, J. Breaking hardware-enforced security with hypervisors. Black Hat USA. 2016.

