
MOST AI EXPLAINABILITY  
IS SNAKE OIL.
OURS ISN’T.

Advanced machine learning (ML) is a subset of AI that uses more data and sophisticated

math to make better predictions and decisions. It’s what powers self-driving cars, Netfix

recommendations, and a lot of bank fraud detection. Banks and lenders could make a lot more

money using ML on top of legacy credit scoring techniques to fnd better borrowers and reject

more bad ones. But adoption of ML has been held back by the technology’s “black-box” nature.

ML models are exceedingly complex. You can’t run a credit model safely or accurately if you

can’t explain its decisions.

What we really want from AI explainability are three things:

consistency, accuracy, and performance. A handful of

techniques are being promoted in the market claiming to

solve this “black-box” problem. Caveat emptor. The

techniques are often inconsistent, inaccurate,

computationally expensive, and/or fail to spot unacceptable

outcomes such as race- and gender-based discrimination.

Some of these techniques have been in use for a long time,

and are quite effective on old modeling approaches like

logistic regression. But they don’t work well with ML.

At ZestFinance, we’ve built new kinds of explainability math into our ZAML software tools that

quickly render the inner workings of ML models transparent from creation through deployment.

You can use these tools to monitor model health in run-time. You can trust the results are fair

and accurate. And we’ve automated the reporting so all you have to do is push a button and

produce all the documentation required to comply with regulations.

In this paper, we compare a few popular explainability techniques with our ZAML technology,

describe their relative strengths and weaknesses, and show how each technique stacks up on a

simple modeling problem. The test we ran showed that ZAML is more accurate, consistent, and

faster than any of these other approaches.

Three common machine learning explainability techniques being championed today are known

as LOCO, permutation impact, and LIME. LOCO, which stands for “leave one column out,”

substitutes “missing” for a variable and recomputes the model’s prediction. The idea is that if the

score changes a lot, the variable that was left out must be really important. Permutation impact

(PI), also called permutation importance, substitutes a variable with a randomly selected value

and recomputes the model’s prediction. As with LOCO, the idea is that if the score changes a lot,

the variable that was scrambled must be really important. LIME, which stands for local
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around a given applicant’s real data values and the real model’s score for those synthetic values. 

It then uses this new, linear approximation of the actual model to explain how the more complex 

model behaves. Essentially, you’re taking a very complex model and pretending it’s simple so 

you can explain it. ZestFinance’s ZAML software uses a proprietary explanation method derived 

from game theory and multivariate calculus that works on the actual underlying model. ZAML 

how it interacts with other variables. The checklist below compares four explainability techniques 

on seven important capabilities. We also added scores for each of the techniques from a test we 

ran on their accuracy, consistency and speed. Accuracy is measured by average rank correlation, 

or how far off the explanations are from the ground truth baselines.  Consistency is measured by 

variance, or how much the difference in explanations varies across all applicants.  Speed was the 

time it took to generate explanations for all the rows in the dataset. 

attributes, along with the results of a side-by-side explainability test we ran on two common ML models. 

Run just as fast as the number of model variables rises.

Analyze the inner workings of the model, not just inputs 

and outputs’

Analyze in a multivariate manner, not just univariate.

Make itself user-friendly and not require expert tuning 

Accuracy in explaining: * 

XGBoost

Neural Network

Variance (consistency at explaining):

XGBoost

Neural Network

Explanation time (sec) *

XGBoost

Neural Network

Does Your Explainability Method…? LOCO  LIME          PI         ZAML

Speed

Accuracy

Accuracy

Accuracy

Accuracy

Consistency

Consistency

Why it Matters

90%

96%

0.02

0.004

0.003

0.005

82%

92%

0.07

0.01

35

49

84%

93%

0.03

0.009

0.02

0.04

99%
100%

0.002
0.0002

0.006
0.26

* Based on an evaluation of the performance of explainability techniques on two popular ML models trained on a

simple, two-variable “Moons” dataset. Results may not be universally generalizable. Accuracy = correlation error.

Consistency = variance.
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Explanations of ML models have to meet a variety of requirements to be trustworthy for 

high stakes business applications such as credit risk modeling, chief among them accuracy, 

consistency, and performance, i.e., prediction speed. The chart above summarizes how the 

four techniques you may be hearing about stack up on an extremely simple model. For real-

world explainability problems, such as those endemic to credit risk modeling, the performance 

differences are even more pronounced. We used a simple model to demonstrate these 

differences to make a point - even a model with just two variables can’t be accurately explained 

accurately by LOCO, PI, or LIME. ZAML explainability methods can. If an explainability technique 

can’t even explain the simplest of “toy” models, is it wise to trust it on a real-world application 

where large dollar amounts are at risk?

What we really want from AI explainability are three things: 

consistency, accuracy, and performance. LOCO, LIME, and PI all 

have shortcomings on one or more of these attributes. LOCO and 

PI work by analyzing one feature one at a time. This means as the 

number of model variables goes up, the algorithms become slower 

and more expensive to run. LOCO, LIME, and PI look only at the 

inputs and outputs of the model, which means they have access to 

much less information than explainers such as ZAML’s that look at 

the internal structure of the model. Probing the model externally 

(i.e. the inputs and outputs) is an imperfect process leading to 

potential mistakes and inaccuracies. So is analyzing refitted and/

or proxy models, as LOCO and LIME require, instead of analyzing 

your final model. We believe that analyzing the real model is really 

important - if you don’t you’re opening yourself up to lots of risks.

When attempting to explain advanced ML models, it’s important that your explanations capture 

the effect of a feature holistically, or in relation to other features. Univariate analysis, as is 

typically employed with LOCO and PI, will not properly capture these feature interactions and 

correlation effects. Again, accuracy suffers. Explainers should also calculate feature explanations 

from a global, and not just local perspective. Let’s say you built a model to understand why 

Kobe Bryant was a great basketball player. Explaining it using only local feature importance will 

suggest that his height was not that big of a deal because, from the model’s perspective, all the 

NBA players clustered around Kobe are also very tall. But you can’t deny that Kobe’s 6’6” height 

has nothing to do with why he’s so good at basketball. Again, inaccuracies crop up. 

Most modeling techniques also have tuning knobs known as hyperparameters that can be 

automatically dialed in to make a model more accurate.  There is no practical equivalent to this 

“automated tuning” operation for explainers. This makes it really difficult to be confident in the 

results you get from an explainer like LIME, because there’s no way to tell whether you correctly 

set a hyperparameter such as the data-area size. Set it too small and the data will be super 

sparse in the high-dimensional space of all the features in the model. Set it too wide and you will 

violate the local linear assumption of LIME.

LET’S UNPACK THIS CHECKLIST

ANALYZING THE REAL 

MODEL IS REALLY 

IMPORTANT - IF YOU 

DON’T YOU’RE OPENING 

YOURSELF  UP TO LOTS 

OF RISKS.
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A consistent explainer uses real data. LIME and PI probe the model with non-real data. For 

example, let’s say you built a model with income, debt, and debt to income ratio. PI will shuffle 

each column one at a time independently. This means when PI analyzes debt to income ratio by 

shuffling, it will no longer be the debt feature divided by the income feature. Since all of the data 

in the train data maintained this relationship, it should be considered undefined behavior to query 

a model this way.

Even slight inaccuracies in explanations can lead to devastating outcomes, like releasing models 

that discriminate based on age, gender, race, or ethnicity, or releasing models that are unstable 

and produce high default rates that can cause lending businesses to hemorrhage money. A 

model explainability technique should provide the same answer given the same inputs and 

model. Inaccurate or inconsistent model explainability techniques might appear to provide some 

assurance of risk management, but if the results aren’t accurate, they provide little value or 

assurance to business stakeholders and regulators. 

Speed and efficiency are also important. Model explainability should be used often during the 

model build process and as the model is applied in order to generate explanations for each 

model-based decision. Slow and inefficient techniques limit the usefulness of explainability: If 

you have to wait overnight for results, you’re going to run the analysis less often, and get less 

frequent insights about how your model is working. That means less time working on better 

models.



PUTTING EXPLAINABILITY TECHNIQUES TO THE TEST
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We took our comparison of explainability techniques one step further and ran an experiment 

to evaluate the various approaches, we conducted an experiment on a sample data set. Any 

good experiment needs a control or ground truth for comparison. We wanted to compare 

how different the explainability approaches performed in relation to ground truth on a simple 

modeling problem to see if any differences emerged. For this study, we used as ground truth a 

reference value computed using math derived from competitive game theory. The reference value 

measures the average marginal benefit introduced by a given model’s input variables. It does this 

by exhaustively enumerating all possible combinations of variables.

For machine learning models, this requires training an exponential number of model variations, 

each with a different combination of variables included. By understanding the comparative 

performance of the models, we can quantify the value of each variable used in the model. For our 

experiment, we evaluated the performance of explainability techniques on the “moons” dataset. 

This is a simple, two variable data set, which is often used in undergraduate machine learning 

courses to demonstrate the limitations of linear models. 

Binary Classification 
Problem
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5IF�UBTL�JT�UP�CVJME�B�NPEFM�UIBU�TFQBSBUFT�UIF�PSBOHF�EBUB�QPJOUT�GSPN�UIF�ZFMMPX�EBUB�QPJOUT�

VTJOH�POMZ�UIF�9�BOE�:�DPPSEJOBUFT��A linear model simply can’t do this very well. To see this, just 

draw any straight line through the above diagram and notice that on either side of the line you 

have both yellow and green data points. There is no straight line that can separate the greens 

from the yellows. The moons dataset provides a simple example showing that machine learning 

methods that model variable interactions and that model the real shape of the data are more 

predictive than old methods like logistic regression that can only create linear models. (This is 

why you have so many models, but this is a topic for another post.)

We built two machine learning classification models trained on this data set. One using XGBoost, a 

popular tree ensemble induction algorithm, and Tensorflow, a popular neural network package. At 

the time of writing, both were considered best in class machine learning modeling techniques. 

We then applied the various explainability approaches to the resulting tree and neural network 

models. The results are provided below.

Class 1

Class 2



ZAML

LOCO

PI

LIME

Correlation Error

0.1%

4.1%

6.8%

7.7%

Runtime

0.258s

0.005s

0.039s

48.52s

Variance

0.000253

0.003953

0.009088

0.010679
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Comparison of explainability techniques for a simple Gradient Boosted Tree model

For Gradient Boosted Trees, LIME, PI, and LOCO all produce high error rates and much higher 

variance even on a very simple modeling problem, when compared with ZAML. Also important to 

note is that LIME is much slower to compute. While PI and LOCO appear to be more reasonable 

in this test on a 2 variable model with 100,000 rows, these methods get much slower very quickly 

as the number of rows and columns increase, so for larger datasets, like those we see every day 

in our credit risk modeling work, they become impractical. We’ve waited hours, even days for 

explanations from LOCO, PI, and LIME. In our experience, the ZAML approach remains reasonable 

to compute on a single host, even for models with thousands of variables. With ZAML, we no 

longer have to wait more than a few seconds for an answer.

EXPLAINING GRADIENT BOOSTED TREES

ZAML

LOCO

PI

LIME

Correlation Error

1.1% 

10.1%

15.6%

17.9%

Runtime

0.006s 

0.003s

0.022s

34.45s

Variance

0.002004 

0.015283

0.029044

0.067037

Comparison of explainability techniques for a Neural Network Model

For neural networks, LIME, PI and LOCO also generate much higher error rates and higher 

variance. Consistent with its performance on gradient boosted trees, LIME is very slow. For those 

interested, the scatter plots showing the comparison of each method with the reference values 

are included in the appendix below. We think the differences in accuracy from the baseline speak 

for themselves.

EXPLAINING NEURAL NETWORKS 



CONCLUSION

Not all explainability techniques are created equal. Even on a simple 

modeling problem like the two-dimensional “moons” dataset, with 

only 100,000 rows, we have shown that ZAML explainability is more 

accurate, consistent, and often faster than the other approaches. When 

applying machine learning on high-stakes business problems like credit 

risk modeling, it’s critical to get the core explainability method right 

so that you truly do know what your model is doing and can manage 

the risk associated with its application. If the core explainability math 

you use generates the wrong answer, you might get your business into 

serious trouble.
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APPENDIX     COMPARISON OF METHODS

The charts below show another view comparing the performance of four explainability methods LOCO 

(Drop One), Permutation Impact (PI), LIME and ZAML. For each method, we created a chart for each of the 

two features in the “moons dataset” being explained. The dots represent samples from the dataset. The 

vertical axis is the contribution of that feature to the score generated by the explainability method. The 

horizontal axis is the contribution of that feature to the score generated by the reference value technique, a 

widely accepted way of quantifying the contribution of individual elements in a complex system. The ideal 

distribution should be on a tight diagonal line, which would reflect as close to 100% correlation as possible. 
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