
Kelly Goetsch

Dramatically Increase Development Velocity
by Applying Microservices to Commerce

Microservices for
Modern Commerce

Compliments of

The end of commerce
platforms as you know them

commercetools offers the industry's first
API and cloud-based solution for
commerce which is built for use alongside
microservices. Use all of our APIs or just
the ones you need. Take your business to
the next level with commercetools and
microservices.

Learn more at: commercetools.com

commerce
platform

Quickly deliver new features to
market

Rapidly iterate to find your next
business model

Improve developer engagement

http://commercetools.com

Kelly Goetsch

Microservices for
Modern Commerce

Dramatically Increase
Development Velocity by Applying

Microservices to Commerce

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97092-8

[LSI]

Microservices for Modern Commerce
by Kelly Goetsch

Copyright © 2017 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster
Production Editor: Kristen Brown
Copyeditor: Octal Publishing, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest
Technical Reviewers: Sachin Pikle, Tony
Moores, Oleg Ilyenko, and Christoph
Neijenhuis

October 2016: First Edition

Revision History for the First Edition
2016-10-26: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservices for
Modern Commerce, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. vii

1. A New Commerce Landscape. 1
Changing Consumer Demands 1
The Status Quo Is Too Slow 3
(Real) Omnichannel Is the Future 7

2. Introducing Microservices. 11
Origins of Microservices 11
Introducing Microservices 12
Advantages of Microservices 28
The Disadvantages of Microservices 33
How to Incrementally Adopt Microservices 38

3. Inner Architecture. 41
APIs 42
Containers 50
Lightweight Runtimes 51
Circuit Breakers 51
Polyglot 53
Software-Based Infrastructure 53

4. Outer Architecture. 55
Software-Based Infrastructure 56
Container Orchestration 56
API Gateway 65
Eventing 66

v

Foreword

We at Rewe Group, a 90-year–old international retailer with €52 bil‐
lion in revenue across 40 brands with more than 12,000 physical
stores, are in the midst of an end-to-end digital transformation of
our entire business. Our competitors today are technology compa‐
nies—not other retailers. Innovation through technology is now at
the very core of our business. Technology is what gets the right
product to the right person, at the right time.

I have long believed that the role of the Chief Executive Officer and
Chief Product Officer would merge, as organizations shift focus to a
product-oriented mindset. Most CEOs agreed with me but have
found it impossible to accomplish because of the legacy enterprise
technology that powers business, particularly retail. It is not possible
to run an agile business in today’s world while running technology
that was developed in the 1990’s for a different era. Quarterly relea‐
ses to production are no longer acceptable. Instead, releases to pro‐
duction must occur multiple times a day. It’s taken 15 years for a
new approach to surface; that new approach is microservices.

Microservices are central to our new approach to commerce. We
now draw from an infinite pool of engineering talent across Europe
to build hundreds of microservices, all in parallel. The value of
microservices to us is innovation. We can quickly assemble teams.
Once established, each team can then iterate on a new feature in
production over the course of hours rather than the months or even
years it would have taken us using the traditional approach. Today’s
infrastructure is all public cloud-based, which offers limitless elastic‐
ity. Teams are now owners of products, with all of the tools required
to autonomously innovate.

vii

We now have a large catalog with hundreds of completely reusable
“Lego block”–like commerce APIs that can be used to build innova‐
tive experiences for our customers. We must be able to adapt quickly
to changes in consumer technology. Just 10 years ago, smartphones
barely existed. Now they’re crucial to our everyday lives. Microservi‐
ces allows us to quickly adapt to changes in consumer technology.
We can have a new app running in just a few days.

Microservices has been transformational to our business in many
ways and we will continue to make deep investments as we trans‐
form to be the market leader.

— Jean-Jacques van Oosten
Chief Digital Officer, Rewe Group

October 2016

viii | Foreword

CHAPTER 1

A New Commerce Landscape

Changing Consumer Demands
We are entering a new era in commerce. Consumers demand to
seamlessly transact anywhere, anytime, on any client. Every sale is
the culmination of potentially dozens of interactions with a con‐
sumer. Today, smartphones alone influence 84% of millennials’ pur‐
chases. Digital touchpoints influence 56% of all purchases. Selling
something to an end consumer is far more complicated than it used
to be, even just 10 years ago. Consumers are firmly in charge and
expect to make purchases on their terms.

What do today’s consumers want?

A Brand Experience—Not Simply a Transaction
Those engaged in commerce are surviving and thriving in today’s
era of commoditized goods by creating experiences, often through
the use of content. Consumers want a story behind the product
they’re buying. A product is never just a product—it’s a reflection of
the consumer. It’s a statement. Today’s brands are successful because
they are able to de-commoditize the products they sell. This requires
the extensive use of content—text, video, audio, and so on.

Consistency of Experience Across Channels
Consumers no longer see divisions between channels (point of sale,
web, mobile, kiosk, etc.). Consumers expect to see the same inven‐
tory levels, product assortment, pricing, and other aspects, regard‐

1

http://bit.ly/2dAyE1B
http://bit.ly/2dAyE1B
http://bit.ly/2eRnmIf

less of how they interact with a brand. Whereas tailoring an
experience to a channel is acceptable, offering a fragmented experi‐
ence is not.

Value-Added Features
A primary driver of online shopping is the additional functionality
that that it offers beyond that of a physical store. These features
include a larger product assortment, ratings/reviews, more in-depth
product descriptions, additional media (enhanced product photos/
videos), related products, tie-ins to social media, and so on.

Convenience
Barely a hundred years ago, physical retail stores were the only way
to make a purchase. Then, catalogs came of age. In the late 1990s,
the Internet began to take off, and consumers could purchase
through a website. Later, smartphones came of age when the iPhone
was released in 2007. In the decade since then, the number of devi‐
ces on the market has exploded, from smart watches to Internet-
enabled TVs. Nearly every Internet-connected consumer electronic
device hitting the market today offers an interface that consumers
can use for shopping. New user interfaces are hitting the market
weekly and successful brands must be able to offer their unique
experience on every one of these new devices.

Retailers (and Everyone Else) Are Now Powered by
Software

Technology permeates every sector of the economy, even those not
formally classified as high-tech. These days every company is a tech
company.

—The New York Times

The increased demands from consumers have forced retailers to
turn into software companies who happen to be in the business of
selling physical or virtual products. Every aspect of a retailer runs on
software—from product placement on shelves, to the robots that
power warehouses, to the app that runs on the latest Apple Watch.

Software not only saves money by improving efficiency, it can drive
top-line growth by enabling marketers to build successful brands.
Consumers want an experience—not simply to buy a commoditized

2 | Chapter 1: A New Commerce Landscape

http://nyti.ms/2dGAePK

product. Marketers can use technology to form life-long bonds with
end consumers by matching the right content to the right consumer.

Differentiation through software is driving retailers to build soft‐
ware from scratch rather than buy it prepackaged from a third-party
software vendor. Differentiation in the marketplace is difficult to
accomplish when everyone is using the same software. If software is
the core of the business, it makes sense to make substantial invest‐
ments in it to provide market-leading differentiation. It’s no longer
an IT cost that needs to be minimized.

The Status Quo Is Too Slow
Most enterprises with $100 million per year in online revenue
release code to production too slowly. Releases often occur once
each quarter and require an evening of downtime. Often, the entire
team must come in over a weekend.

Enterprises are still learning how to reorient themselves around
software. It wasn’t too long ago that commerce was seen as an IT-
only expense, out on the periphery of an organization.

Let’s explore a few of the varied issues.

IT Is Seen as an Expense to be Minimized
Many enterprises still see IT as an expense—not as the business.
Work is submitted to IT, as if it were an external system integrator,
rather than an enabler of the business. If work is submitted to third-
party system integrators, the lowest cost bid often wins out. Software
and services are often centrally procured and an entire enterprise is
forced to use the same technology stack regardless of fit. This cul‐
ture of cost minimization comes from the days when IT was more
on the periphery of business rather than the business itself.

Organization Structure
Any organization that designs a system (defined broadly) will pro‐
duce a design whose structure is a copy of the organization’s com‐
munication structure.

—Mel Conway (1968)

The Status Quo Is Too Slow | 3

Conway’s famous observation in his seminal paper has been so cru‐
cial to microservices that microservices is often called “Hacking
Conway’s Law.”

Most IT organizations are set up to minimize cost through speciali‐
zation (see Figure 1-1). Storage administrators are in their own
group, Java developers are in their own group, and so on. This
allows each person to be fairly efficient, but the system as a whole is
slower.

Figure 1-1. Typical horizontal-focused specialization within an enter‐
prise

Each team has its own work location, process for receiving work
(typically a ticketing system of some sort), service level agreements,
process for assigning work to individuals, release cycles, and so on.
This strict separation makes it difficult to make any changes that
span multiple teams. For example, suppose that a Java developer
receives a requirement to begin capturing a customer’s shoe size
during registration. In a typical enterprise, this would be incredibly
difficult even though the work should take about two minutes for
any competent developer to perform. Here’s a non-exhaustive list of
the serial steps required to perform this:

1. Java developer receives requirement
2. Java developer must use DBA’s ticketing system to file a ticket
3. DBA team receives work order, prioritizes it, and assigns it
4. DBA adds column to database per work order
5. DBA updates ticket, requesting that the Java developer view that

it was added correctly

4 | Chapter 1: A New Commerce Landscape

http://www.melconway.com/Home/Conways_Law.html

6. Java developer logs in to database and finds that it was added
correctly

7. Java developer updates ticket stating that the column was added
correctly and that the change can be promoted

8. Java developer waits for next database build
9. Java developer updates the object relational mapping system to

look for the new column in the database
10. Java developer updates the registration API to include birth date

These steps are exhausting even just to read, yet this is how even
minor changes are implemented in enterprises. These steps don’t
even include the UI updates. This bureaucracy, due to horizontally
specialized teams, is what leads to quarterly releases.

With teams so large and isolated, a corrosive culture of distrust
develops. Rather than working together, teams are motivated to
erect more bureaucracy (change requests, architecture review pan‐
els, change control boards, etc.) to cover themselves in the event of a
problem.

Coupling
Today’s enterprises are characterized by extreme coupling, both in
terms of organization and architecture.

Let’s begin with organization.

Enterprises cause extremely tight coupling between horizontal layers
because they build teams of people who have only one focus. For
example, each user interface (point of sale, web, mobile, kiosk, etc.)
has its own team. Those UIs are tightly coupled to one or more
applications, which are each owned by a separate team. Often,
there’s an integration team that glues together the different applica‐
tions. Then, there’s a database on which all teams are completely
dependent. Infrastructure is managed by yet another team. Each
team, no doubt, is good at what they do. But those barriers cause
tight coupling between teams, which introduces communication
overhead and causes delays.

It would be as if an auto repair shop had one person to order tires,
another person to unscrew the lug nuts, another person to remove
the old tire, another person to balance the new tire, another person
to mount it, and one final person to screw on the lug nuts. Sure,

The Status Quo Is Too Slow | 5

each of those six people are the best at what they do but the over‐
head of coordinating those activities across six people far outweighs
any gains had by the efficiency improvement at each step. Yet this is
how enterprises operate today. In the past, this was necessary
because these layers all required extensive expertise. For example,
networking required decades of experience and real competency.
Now it’s all software-based, as illustrated here:

$ docker network create frontend-network

To further complicate matters, enterprises encourage too much code
sharing. Because IT is seen as a cost, and code is expensive to
develop, many enterprises force development teams to reuse as
much code as possible. For example, suppose that a team within an
enterprise builds a new OAuth client that is forced onto the other
teams within the entrprise as a form of cost savings. Every team that
this library is forced on now has a firm dependency on the team that
created the OAuth client. There is now a tight coupling between
teams where one didn’t exist before. A typical enterprise application
could have hundreds of shared libraries, creating a web of depen‐
dencies. Over time, this complex labyrinth devolves into paralysis;
everyone is afraid to touch anything because it could break the
entire system.

Architecture introduces even more coupling. Enterprises have a
handful of large, monolithic applications such as ERP, CRM, WMS,
OMS, CMS, and so on. These large monolithic applications often
expose many different endpoints, but those endpoints are often not
independently consumable. The endpoints must be called in a spe‐
cific order and fed specific data. That’s why these monolithic appli‐
cations are glued together by the use of enterprise service buses, with
a lot of business logic residing in those buses. This tight coupling of
large monolithic applications results in testing and releasing all
monolithic applications together as an atomic unit. Changing one
endpoint in one monolithic can have wide-ranging consequences
across many of the other monolithic applications that might be con‐
suming it.

Yet one more way of coupling is the practice of releasing only one
version of an application to production at any time. Suppose that a
company deploys version 3.2 of a monolithic commerce application
to production. The website, iOS, Android, kiosk, and chatbot clients
have all coded to version 3.2 of that application. What happens

6 | Chapter 1: A New Commerce Landscape

when the company deploys version 4 of the commerce application?
It’s going to break all of the clients that have coded to version 3.2.
With only one version of an application deployed, you must update
your monolith and all clients at the same time, which is coupling at
its most extreme.

The coupling introduced by organization structure and architecture
choices has one major consequence—decreased speed.

Packaged Applications
Many of today’s enterprise applications are large, monolithic pack‐
aged applications that are bought from a handful of large software
vendors, deployed on-premises, and heavily customized. Many
packaged commerce applications have millions of lines of custom‐
ized code.

These applications are sold to thousands of customers. Those thou‐
sands of customers each write millions of lines of customized code
on top of the application. As the number of customers increases, the
vendors that sell the software are increasingly unable to make
changes because of all the trouble it would create. The more success‐
ful the product, the slower it evolves. It gets frozen in time.

(Real) Omnichannel Is the Future
Omnichannel is the future of retail. Today’s top leaders have mas‐
tered it, but the vast majority of retailers have yet to adopt it.

To end consumers, omnichannel means having a consistent experi‐
ence with a brand, regardless of how they interact with it. Whether
through a website, mobile device, wearable device, or in store, the
experience is the same and integrated.

The web is dead. Long live the Internet.
—Chris Anderson and Michael Wolff , August 17 , 2010

This is why many in the industry have dropped “e” from “eCom‐
merce” to reflect that it’s not something different. Consumers should
be able to buy online and pick up or return in-store, browse in-store
and buy online, have access to the same promotions, and so on. If
channels are offering different data (subset of products, different
prices, etc.) it should be because the experience is being optimized
for each channel or there are opportunities to price discriminate.

(Real) Omnichannel Is the Future | 7

To technologists, omnichannel means having one backend system of
record for each bit of functionality (pricing, promotions, products,
inventory, etc.), with UIs being more or less disposable. Developers
of UIs get a large catalog of clearly defined APIs (often HTTP plus
REST) that can be composed into a single application, as demon‐
strated in Figure 1-2.

Figure 1-2. True omnichannel—single systems of record for each busi‐
ness function; disposable UIs

Again, the experience per channel can vary, but the variations are
deliberate rather than as a result of IT fragmentation.

Most of today’s enterprise commerce platforms are sidecars on top
of the old in-store retail platforms. There might be additional side‐
cars on top of the commerce platforms for other channels, such as
mobile. Each of these systems acts as its own mini system of record,
with heavy integration back to the old in-store retail platform, as
shown in Figure 1-3.

Each system has its own view of pricing, promotions, products,
inventory, and so on, which might or might not ever be reconciled
with the eventual system of record. For example, many retailers have
web-only pricing, promotions, products, inventory, and so forth.

8 | Chapter 1: A New Commerce Landscape

Figure 1-3. Typical commerce application—large monolithic applica‐
tions tightly coupled with legacy backend systems of record (ERP,
CRM, etc.)

This approach worked adequately when there were just physical
stores and a website. But now, there are dozens if not hundreds of
channels. The old approach just doesn’t scale anymore. As a thought
experiment, could you deploy Amazon.com as a single monolithic
application as one large EAR file? No. It’s ludicrous to think about it.
But retailers trying to unseat Amazon.com regularly deploy large
monolithic applications, expecting to be able to release new func‐
tionality with the same agility as those who have implemented
omnichannel from the very beginning. Amazon.com has famously
used microservices since 2006. Today, it has thousands of individual
microservices that serve as building blocks for dozens of UIs.

Fortunately, there is a better way….

(Real) Omnichannel Is the Future | 9

CHAPTER 2

Introducing Microservices

Origins of Microservices
Although the term “Microservices” first rose to prominence in 2013,
the concepts have been with us for decades.

1. Make each program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding new
features.

2. Expect the output of every program to become the input to
another, as yet unknown, program. Don’t clutter output with
extraneous information. Avoid stringently columnar or binary
input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried
early, ideally within weeks. Don’t hesitate to throw away the
clumsy parts and rebuild them.

—Doug McIlroy, one of the founders of Unix and inventor of
the Unix pipe, 1978

The software industry has long looked for ways to break up large
monolithic applications into smaller more modular pieces with the
goal of reducing complexity. From Unix pipes to dynamic-link libra‐
ries (DLLs) to object-oriented programming to service-oriented
architecture (SOA), there have been many attempts.

It is only due to advances in computer science theory, organizational
theory, software development methodology, and infrastructure that

11

microservices has emerged as a credible alternative to building
applications.

So what are microservices?

Introducing Microservices
Microservices are individual pieces of business functionality that are
independently developed, deployed, and managed by a small team
of people from different disciplines (see Figure 2-1).

Figure 2-1. Typical microservice team composition

Inner versus Outer Complexity
Fundamentally, microservices shift complexity outward, trading
external complexity for inner simplicity. “Inner” is what’s in a single
microservice and how it’s packaged. It includes the runtime, the
business logic, coding to the datastore, circuit breakers, manage‐
ment of application state, and so on—basically, anything for which
an individual developer is responsible. “Outer” is everything outside
of the individual microservice, including how instances of the appli‐
cation are deployed, how individual instances are discovered/routed
to, load balancers, messaging, networking—basically anything for

12 | Chapter 2: Introducing Microservices

which an ops person outside of an individual microservice team is
responsible.

Monolithic applications have always been difficult to build, espe‐
cially as they increase in size. But monoliths are relatively easy to
deploy and manage. With microservices, each microservice is
exceedingly easy to build and manage because the application is
small and limited in scope. Large monolithic applications can have
tens of millions of lines of code whereas a microservice may only
have a few thousand. Some of the more extreme microservices prac‐
titioners say that a microservice should be so small that it can be
completely rewritten over a weekend. However, although each
microservice is easier to build, deploy, and manage, the outer com‐
plexity becomes more difficult.

There is no single development, in either technology or manage‐
ment technique, which by itself promises even one order of magni‐
tude [tenfold] improvement within a decade in productivity, in
reliability, in simplicity.

—Fred Brooks, 1986

Microservices is worth the tradeoff from inner to outer complexity,
especially for commerce, because it dramatically shortens the time
to market for new individual features. Because each team is isolated,
a requirement can often be implemented and deployed to produc‐
tion within the course of an hour. This is possible because the scope
of each team’s work is limited to its own microservice. Each micro‐
service stays small and simple, with each team having full control
over it. Monolithic applications, on the other hand, grow in com‐
plexity with each passing year as they get larger. Over time, this dra‐
matically slows down development due to the complexity of the
monolithic applications.

As monolithic applications grow in size, the time required to imple‐
ment a new feature increases, to the point where releases occur
every quarter or six months. The large monolithic applications that
run many banks, airlines, and retailers are sometimes deployed once
a year or once every two years. Over time, the inability to deploy
new features puts organizations at a severe competitive disadvantage
relative to more nimble organizations that are able to release weekly,
daily or even hourly, as is illustrated in Figure 2-2.

Introducing Microservices | 13

Figure 2-2. Microservices offers less complexity over time

Defining Microservices
Now that we’ve reviewed some of the high-level characteristics of
microservices, let’s look at what the defining characteristics actually
are:

Single purpose
Do one thing and do it well.

Encapsulation
Each microservice owns its own data. Interaction with the
world is through well-defined APIs (often, but not always,
HTTP REST).

Ownership
A single team of 2 to 15 (7, plus or minus 2, is the standard)
people develop, deploy and manage a single microservice
through its lifecycle.

Autonomy
Each team is able to build and deploy its own microservice at
any time for any reason, without having to coordinate with any‐
one else. Each team also has a lot of freedom in making its own
implementation decisions.

Multiple versions
Multiple versions of each microservice can exist in the same
environment at the same time.

14 | Chapter 2: Introducing Microservices

Choreography
Actions across multiple microservices are managed in a dis‐
tributed fashion, with each endpoint being intelligent enough to
know its inputs and outputs. There is not a top-down workflow
that manages a transaction across multiple microservice bound‐
aries.

Eventual consistency
Any given bit of data is, generally speaking, eventually consis‐
tent.

It’s tempting to think of microservices versus
monoliths, but there’s a lot of gray area between
the two. There are very few “true” adherents to
all of the principles of microservices. What is
outlined here is more of a textbook definition.
Feel free to implement only what works for you
and your organization. Don’t get too dogmatic.

Let’s explore each of these in more depth.

Single purpose
A large monolithic application can have tens of millions of lines of
code and perform hundreds of individual business functions. For
example, one application might contain code to handle products,
inventory, prices, promotions, shopping carts, orders, profiles, and
so on. Microservices, on the other hand, each perform exactly one
business function. Going back to the founding principles of Unix,
Write programs that do one thing and do it well, is a defining charac‐
teristic of microservices. Doing one thing well allows the teams to
stay focused and for the complexity to stay at a minimum.

It is only natural that applications accrue more and more functional‐
ity over time. What begins as a 2,000-line microservice can evolve to
one comprising more than 10,000 lines as a team builds competency
and the business evolves. The size of the codebase isn’t as important
as the size of the team responsible for that microservice. Because
many of the benefits of microservices come from working together
as a small tight-knit team (2 to 15 people). If the number of people
working on a microservice exceeds 15, that microservice is probably
trying to do too many things and should be broken up.

Introducing Microservices | 15

In addition to team size, another quick test is to look at the name of
a microservice. The name of a microservice should precisely
describe what it does. A microservice should be named “Pricing” or
“Inventory”—not “PricingAndInventory.”

Encapsulation
Each microservice should exclusively own its data. Every microser‐
vice should have its own datastore, cache store, storage volume, and
so forth (see Figure 2-3). No other microservice or system should
ever bypass a microservice’s API and write directly to a datastore,
cache layer, file system, or anything else. A microservices’ only inter‐
action with the world should be through a clearly defined API.

Figure 2-3. Each microservice should exclusively own its data

Again, the goal of microservices is to reduce coupling. If a microser‐
vice owns its own data, there is no coupling. If two or more micro‐
services are reading/writing the same data (Figure 2-4), tight
coupling is introduced where there was none before.

Figure 2-4. Don’t share data across microservices; use application-level
APIs to exchange data

16 | Chapter 2: Introducing Microservices

Although it is preferable for each microservice to have its own data‐
store, cache store, storage volume, or other data storage mechanism,
it is not necessary that each microservice provision its own single-
tenant instance of those things. For example, it might make more
sense to provision one large database, cache store, storage volume or
other system to which all microservices can write. What matters is
that there is a firm partition between each microservice’s data: each
microservice must exclusively own its own data. For example, it
might make sense to have one large database with 100 schemas
rather than 100 databases with one schema. In other words, feel free
to share resources but not data.

The downside of sharing is coupling. The availability of your micro‐
service is now dependent on the availability of a database that some‐
one else manages. The team that administers the shared database
might need to bring it down for scheduled maintenance.

Ownership
A typical enterprise-level commerce application has hundreds of
staff who work on it. For example, it would not be uncommon to
have 100 backend developers building a large monolithic applica‐
tion. The problem with this model is that staff members don’t feel
like they own anything. A single developer will be contributing just
one percent of the codebase. This makes it difficult for any single
developer to feel a sense of ownership.

In economic terms, lack of ownership is known as a Tragedy of the
Commons problem. Individuals acting in their own self-interest
(e.g., farmers grazing their cattle) almost inevitably end up making
the common resource (e.g., public lands) less better off (by over-
grazing). It’s the exact same problem in a large monolithic applica‐
tion—hundreds of staff acting in their own self-interest end up
making the monolithic application more complicated and add more
technical debt. Everyone must deal with complexity and technical
debt, not just the individual who created it.

Microservices works in large part due to ownership. A small team of
between 2 to 15 people develop, deploy and manage a single micro‐
service through its entire lifecycle. This team truly owns the micro‐
service. Ownership brings an entirely different mentality. Owners
care because they have a long-term vested interest in making their
microservice succeed. The same cannot be said about large mono‐

Introducing Microservices | 17

lithic applications with which hundreds of people are involved. Sup‐
pose that a team has five members—three developers, one ops
person, and one business analyst. In this case, any given developer
contributes 33% of the code. Every person on that team is making a
substantial contribution and that contribution can be easily recog‐
nized. If a microservice is up 100 percent of the time and works per‐
fectly, that team is able to take credit. Similarly, if a microservice is
not successful, it’s easy to assign responsibility.

On an individual level, microservices brings out the best in people
because they can’t hide in a larger team. The performance of indi‐
viduals in any team take the shape of a standard bell curve. The top
performers like microservices because they can have an outsized
influence over a microservice. Microservices attracts high perform‐
ers because it allows them to have more responsibility.

A team responsible for a microservice should be composed of 2 or
more people but no more than 15. The best team size is seven, plus
or minus two people. There’s some interesting research and anec‐
dotes that impact team size.

2 people
Insufficient skills to draw from. Two people isn’t quite a “team.”
It’s more like a marriage—which can bring its own challenges.

3 people
Unstable grouping because one person is often left out, or one
person controls the other two.

4 people
Devolves into two pairs rather than a cohesive team of four
people.

5 to 9 people
Feeling of a “team” really begins. Enough skills to draw from,
large enough to avoid the instability of smaller teams, small
enough that everyone is heard.

10 to 15 people
Team becomes too large. Not everybody can be heard, smaller
groups might splinter off.

Each team should have a wide mix of skills, including development,
operations, datastore administration, security, project management,
requirements analysis, and so on. Often, teams are composed of one

18 | Chapter 2: Introducing Microservices

business analyst, one or two operations people, and a handful of
developers. Individuals within a team often perform each other’s
work. For example, if the sole operations person in a team of five is
out on vacation, one of the developers will assume operations
responsibilities.

An important dynamic in team sizes is trust. Trust is required for
real work to get done. When there’s a lack of trust within a team,
individuals compensate by protecting themselves. This protection
often takes the form of excessive paperwork (i.e., change requests,
production readiness reviews, architecture review boards) and doc‐
umentation. Even though this can diffuse responsibility in the event
of a problem, this behavior is counterproductive to the goals of the
organization as a whole. Smaller, tight-knit, trusting teams don’t
have this problem.

Another way to look at team size is in terms of communication
pathways. Communication pathways grow exponentially as team
members are added, and can slow down progress. In his 1975 book,
The Mythical Man Month, Fred Brooks put forth an equation that
calculates the number of communication pathways in a team.
Within a team, the number of communication pathways is defined
as [n*(n–1)]/2, where n = team size. A team of two has only one
communication pathways but a team of 20 has 190 pathways, as
illustrated in Figure 2-5. Fewer pathways makes for faster develop‐
ment and greater employee satisfaction.

Figure 2-5. Communication pathways within a team

Introducing Microservices | 19

Autonomy
Ownership cannot exist without autonomy. Autonomy can mean
many things in the context of microservices.

Each team should be able to select the technology best suited to
solve a particular business problem—programming language, run‐
time, datastore, and other such considerations. The tech stack for a
microservice that handles product image resizing is going to look
very different from a tech stack for a shopping cart microservice.
Each team should be able to select the tech stack that works best for
its particular needs and be held accountable for that decision. Each
microservice should expose only an API to the world; thus the
implementation details shouldn’t matter all that much. That being
said, it makes sense for enterprises to require each team to select
from a menu of options. For example, the programming language
can be Java, Scala, or Node.js. Datastore options could be MongoDB,
Cassandra or MariaDB. What matters is that each team is able to
select the type (Relational, Document, Key/Value, etc.) of product
that works best, but not necessarily the product (MongoDB, Cassan‐
dra, MariaDB) itself. Teams should be required to standardize on
outer implementation details, like API protocol/format, messaging,
logging, alerting, and so on. But the technology used internally
should be largely up to each team.

Along with technology selection, each team should be able to make
architecture and implementation decisions so long as those deci‐
sions aren’t visible outside of the microservice. There should never
be an enterprise-wide architecture review board that approves the
architecture of each microservice. Code reviews should be per‐
formed by developers within the team—not by someone from the
outside. For better or worse, the implementation decisions belong to
the team that owns and is responsible for the microservice. If a
microservice is not performing to expectation, engage a new team to
build it. Remember, each microservice should be fairly small
because it is solving a very granular business problem.

Each team should be able to build and run its own microservice in
complete isolation, without depending on another team. One team
shouldn’t build a library that another team consumes. One micro‐
service shouldn’t need to call out to another microservice as it starts
up or runs. Each microservice is an independent application that is
built, deployed and managed in isolation.

20 | Chapter 2: Introducing Microservices

Each team should also be able to publish a new version of a micro‐
service live at any time, for any reason. If a team has version 2.4 of a
microservice deployed to production, that team should be able to
release version 2.5 and even 3.0.

Multiple versions
Another defining characteristic of microservices is the ability (but
not obligation) to deploy more than one version of a microservice to
the same environment at the same time. For example, versions 2.2,
2.3, 2.4, and 3.0 of the pricing microservice may be live in produc‐
tion all at the same time. All versions can be serving traffic. Clients
(e.g., point of sale, web, mobile, and kiosk) and other microservices
can request a specific version of a microservice when making an
HTTP request. This is often done through a URL (e.g., /inventory/2/
or /inventory?version=2). This is great for releasing minimum viable
products (MVPs). Get the first release out to market as v1 and get
people to use it. Later, release v2 as your more complete product.
You’re not “locked in” in perpetuity, as you often are with monoliths.

Monolithic applications, on the other hand, don’t have this level of
flexibility. Often, only one version of a monolithic application is live
in an environment at any given time. Version 2.2 of a monolithic
application is completely stopped and then version 2.3 is deployed
and traffic is turned back on.

The ability to support multiple clients is a strength of microservices
and is an enabler of real omnichannel commerce. Clients and other
microservices can code to a specific major API version. Suppose that
the ecosystem codes to a major version of 1. The team responsible
for that microservice can then deploy versions 1.1, 1.2, 1.3, and
beyond over time to fix bugs and implement new features that don’t
break the published API. Later, that team can publish version 2,
which breaks API compatibility with version 1, as shown in
Figure 2-6.

Figure 2-6. Multiple versions of the same service enable clients to
evolve independently

Introducing Microservices | 21

Clients and other microservices can be notified when there’s a new
version available but they don’t have to use it. Versions 1 and 2 coex‐
ist. A year after the publication of version 2 when nobody is using
version 1 any longer, version 1 can be removed entirely.

Monolithic applications suffer from the problem of forcing all cli‐
ents to use the same version of the application. Any time there’s an
API change that breaks compatibility, all clients must be updated.
When the only client used to be a website, this was just fine. When it
was mobile and web, it became more difficult. But in today’s omni‐
channel world, there could be dozens of clients, each with its own
release cycle. It is not possible to get dozens of clients to push new
versions live at the same time. Each client must code to its own ver‐
sion, with migrations to later versions happening as each client goes
through its own release cycles. This approach allows each microser‐
vice to innovate quickly, without regard to clients. This lack of cou‐
pling is part of what makes microservices so fast.

The major challenge with supporting multiple versions of a micro‐
service concurrently is that all versions of a microservice in an envi‐
ronment must read/write to the same backing datastore, cache store,
storage volume, or other storage schema. A microservice’s data
remains consistent, even though the code might change. For exam‐
ple, version 1.2 of the product microservice might write a new prod‐
uct to its backing database. A second later, version 2.2 of the same
microservice might retrieve that same product, and vice versa. It
can’t break. Similarly, an incoming message might be serviced by
any version of a microservice.

Evolvable APIs
It is possible to offer a single evolvable API rather than multiple ver‐
sions of one API. Having one API that evolves solves the problem
mentioned in the previous paragraph, but comes at the cost of
reducing the level of changes you can make. For example, you can’t
just rewrite your pricing API, because you might have a dozen cli‐
ents that depend on the original implementation. If you don’t need
to radically rewrite your APIs, having a single evolvable API is pref‐
erable to having multiple versions of the same API.

Support for more than one version adds a new dimension to devel‐
opment and deployment. That’s why microservices is fundamentally

22 | Chapter 2: Introducing Microservices

seen as a tradeoff from inner to outer complexity. But the benefit of
being able to innovate quickly without being tightly coupled to cli‐
ents more than outweighs the cost.

Choreography
Centralization is a defining characteristic of traditional monolithic
applications. There is one centralized monolithic commerce applica‐
tion. Often, there is a top-down “orchestrator” system of some sort
that coordinates business processes across multiple applications. For
example, a product recall is issued, which triggers a product recall
workflow. Figure 2-7 presents a very simple overview of what that
workflow would look like.

Figure 2-7. Traditional top-down, centralized, coupled workflow

This model introduces tight coupling. The workflow must call APIs
across many different applications, with the output of one being fed
into the next. This introduces tight coupling between applications.
To change the warehouse’s APIs now requires an update and retest‐
ing of the entire workflow. To properly test the workflow, all other
applications called by that workflow need to be available. Even sim‐
ple API changes can require retesting an enterprise’s entire backend.
This leads to quarterly releases to production because it’s just not
possible to perform this testing more frequently than that. This cen‐
tralized orchestrator is also a single point of failure.

Microservices favors choreography rather than orchestration. Rather
than each application being told what to do by a centralized coordi‐
nator, each application has enough intelligence to know what to do
on its own.

Introducing Microservices | 23

Microservices is often referred to as having
smart endpoints and dumb pipes. Endpoints are
the individual REST APIs that are used to inter‐
face with individual microservices. Pipes are just
plain HTTP. Requests from system to system are
rarely if ever modified while en route.
SOA is often referred to as having dumb end‐
points and smart pipes. Endpoints are exposed
methods in large monolithic applications that
cannot be called independently. Pipes are often
routed through Enterprise Service Bus–type lay‐
ers, which often apply vast amounts of business
logic in order to glue together disparate mono‐
lithic applications.

In this model, everything (for example, a product recall) is modeled
as an event and published to an event bus. Interested microservices
can subscribe to receive that event. But there isn’t a centralized sys‐
tem instructing each microservice which events to consume. The
authors of the inventory microservice will independently come to
the conclusion that they need to know if a product is recalled,
because that would affect inventory.

Going back to our product recall example, a choreography-based
approach would look like Figure 2-8.

Figure 2-8. Loosely coupled, distributed, bottom-up choreography

Applications are loosely coupled, which is the key strength of micro‐
services. Figure 2-9 depicts how events look from the standpoint of
an individual microservice.

Each microservice subscribes to events, performs some action, and
publishes more events for anyone who cares to subscribe to them.
Each microservice is unaware of which application produces events,

24 | Chapter 2: Introducing Microservices

http://bit.ly/2elgYp1

or which application consumes the events it produces. It is a decou‐
pled architecture meant for distributed systems.

Figure 2-9. Eventing-based architecture

Eventual Consistency
Monolithic applications are strongly consistent, in that any data
written to a datastore is immediately visible to the entire application
because there’s only one application and one datastore.

Microservices are distributed by their very nature. Rather than one
large application, there might be dozens, hundreds or thousands of
individual microservices, each with its own datastore. Across the
entire system there might be dozens of copies of common objects,
like a product. For example, the product, product catalog, and
search microservices might each have a copy of a given product. In a
monolithic application, there would be exactly one copy of each
product. This isn’t cause to panic. Instead, consider what this dupli‐
cation buys you—business agility.

Adopting microservices requires embracing eventual consistency.
Not all data will be completely up to date. It doesn’t need to be. For
example, most of the world’s ATMs are not strongly consistent. Most
ATMs will still dispense money if they lose connectivity back to the
centralized bank. Banks favor availability over consistency for busi‐
ness reasons—an ATM that’s available makes money. Much of the

Introducing Microservices | 25

http://bit.ly/2ele9Ek

world favors availability over consistency. That most data in com‐
merce systems is consistent is more a byproduct of the prevailing
monolithic architecture and centralized databases rather than a
deliberate choice.

Suppose that an end client needs to render a category page with 10
products. In a monolithic architecture, it would look something like
Figure 2-10.

Figure 2-10. Viewing a category page with a monolith

The category method calls the product function 10 times. The prod‐
uct function calls the inventory and pricing functions. All of this
code runs inside a single process. The application is within a few
milliseconds of the database.

Now, let’s take a look at Figure 2-11 to see how this would look if
you directly mapped it back to a microservices-style architecture.

With tens of milliseconds separating each microservice, this clearly
wouldn’t work. Synchronous calls between microservices should be
exceptionally rare, if entirely non-existent.

Instead, the proper way to do this with microservices is to build a
product catalog microservice that is the only microservice accessed
to retrieve product data. The category, product, inventory, pricing,
and all other related microservices each act as the system of record
for their own individual pieces of data, but they publish that data
internally in the form of events. The product catalog microservice
will pull down those events and update its own datastore, as demon‐
strated in Figure 2-12.

Yes, this results in duplication. There are now many copies of each
object. But consider this: how much does storage cost today? It is
minuscule compared to the benefits of faster innovation. The over‐

26 | Chapter 2: Introducing Microservices

arching goal of microservices is to eliminate coupling. Sharing data
introduces tight coupling.

Figure 2-11. Microservices will not scale if implemented like a dis‐
tributed monolith

Figure 2-12. Event-based architecture for preventing synchronous calls
between microservices

Introducing Microservices | 27

Sometimes data needs to be strongly consistent. For example, the
shopping cart microservice should probably query the inventory
microservice to ensure that there’s inventory available for each prod‐
uct in the shopping cart. It would be a terrible experience if a
customer made it to the final stage of checkout before being told a
product was unavailable. There are two basic approaches to strong
consistency:

• Have the clients call the system of record microservice directly.
For example, the inventory microservice is the system of record
for inventory. Although the product catalog can return a cached
view of inventory, it might not be up-to-date enough for the
shopping cart. When the shopping cart screen is shown, the cli‐
ent can query the product catalog microservice for product
details and the inventory microservice for up-to-date inventory
levels.

• Have the microservices make synchronous calls to each other.
For example, /ProductCatalog?productId=123456&forceInventor‐
ySync=true would force the product catalog microservice to
synchronously query the inventory microservice for up-to-date
inventory. This approach is generally frowned upon because it
harms performance and availability.

There are very few instances for which data must be truly consistent.
Think very hard about introducing this as a requirement, because
the consequences (coupling, performance, availability) are so dam‐
aging. Don’t fall into the trap of implementing microservices as a
monolith.

Advantages of Microservices
Microservices offers many advantages. Let’s explore some of them.

Faster Time to Market
Faster time to market of new features is the most important benefit
of microservices. The overall time it takes to get to market initially
might be longer due to the additional up-front complexity intro‐
duced by microservices. But after it’s live, each team can independ‐
ently innovate and release very quickly (Figure 2-13).

28 | Chapter 2: Introducing Microservices

Figure 2-13. Individual teams can independently innovate

Getting a feature to market quickly can have substantial top-line
benefits to your business. If releases to production occur quarterly
and it takes four iterations to get a feature right, it would therefore
take a year to get it right. But if releases occur daily, it takes only
four days to get it right. In addition to quick iteration, microservices
enables failures to occur faster. Sometimes, features just don’t work
out as expected. Rather than wait a quarter for the feature to be
pulled, it can be pulled immediately.

Microservices are so fast because they eliminate dependencies. With
microservices, you don’t have to deal with the following:

• Architecture approval from centralized architecture review
committee

• Release approval from management
• Horizontal dependencies—for example, no waiting on DBAs to

change the shared database, no waiting on ops to provision
compute

• Coordinating a release with another team (vertical dependen‐
cies)—for example, the inventory microservice team will never
need to release alongside the product catalog microservice team

• Approval from QA, security, and so on—each team performs
these functions

Advantages of Microservices | 29

The responsibility for these centralized functions is pushed down to
each small team, which has the skills required to be self-sufficient.
Each team simply cares about its inputs (typically events and API
calls) and its outputs (typically events and APIs). Eliminating
dependencies is what dramatically increases development velocity.

True Omnichannel Commerce
Fully adopting microservices means having individual APIs that are
the sole source of truth for granular business functions. The user
interfaces on top of those APIs become essentially disposable. Next
time Apple or Facebook introduce a new type of application, you
can easily build it without having to build a whole backend. New
user interfaces can be built in days.

Better and Less Complex Code
Microservices tends to produce much better code because a single
microservice performs exactly one business function. Large mono‐
lithic applications can have tens of millions of lines of code, whereas
a microservice might have only a few thousand. Naturally, a small
codebase tends to be better than a much larger codebase.

Code is also better because a small team owns it and is responsible
for it. The codebase is a reflection of that small team. Developers,
like all people, want to look good to their peers and superiors.

Finally, each microservice team has a strong incentive to write qual‐
ity code. With a traditional monolithic application, the team that
writes the code is unlikely to ever get a call in the middle of the night
if something isn’t working. That’s the role of ops. But with a micro‐
service, each small team is also responsible for production support.
It’s easy to check in shoddy code that someone else must fix—usu‐
ally at the most inconvenient of times. It’s not easy to do that to the
person you sit next to and go to lunch with every day.

Accountability
Each small team owns a single microservice from its inception to
retirement. That team has great freedom to make architecture,
implementation, and technology decisions. All of that freedom
means each team and each member of that team is accountable. If a
team picks a hot new open source project but it fizzles out in six

30 | Chapter 2: Introducing Microservices

months and has to be replaced, that team is responsible for fixing it.
Nobody can point fingers. Conversely, if a team’s microservice is
available 100 percent of the time and has a zero percent error rate,
that team can take sole credit for having made good choices.

Because each microservice’s interface with the world is an API, it’s
fairly easy to quantitatively measure its availability, error rate, and
performance over time. It’s also easy to measure a team’s throughput
in terms of story points, features, and so forth. It’s one small team
writing one small application, solving one business problem, expos‐
ing (usually) one API.

Microservices has the unintentional side effect of raising the quality
of employees. In a large team, the worst members can simply hide.
Maybe they write paperwork, approve change requests, or have
some other administrative task. Maybe someone else rewrites their
code. People can hide in a large team. But in a small team, poorer-
performing members can’t hide. If there are three developers in a
team and one isn’t carrying his weight, it will be very apparent to the
other two developers and the rest of the members of that small team.
Underperformers voluntarily or involuntarily leave. Top performers
will be attracted to a culture of freedom and accountability.

Enhanced Domain Expertise
Microservices requires that business functions be granularly split
into separate services. In a commerce system, you’ll have microser‐
vices for promotions, pricing, product catalog, inventory, shopping
carts, orders, and other components. Each small team owns a single
microservice from its inception to retirement.

Each team often includes one or two business analysts, product
managers, or someone else in a less-technical role whose responsi‐
bility it is to look after features and functionality. Those people are
able to develop very deep domain-specific expertise because they
look after just one small thing. For example, the business analyst
responsible for promotions is going to be the company’s expert on
promotions. With monolithic applications, business analysts tend to
be in a large pool and are periodically assigned to different func‐
tional areas. With microservices, it’s easy to develop very deep busi‐
ness expertise in one area.

The technical members are also able to develop a very deep techni‐
cal expertise in the technology and algorithms required to support a

Advantages of Microservices | 31

business function. For example, the team building the inventory
microservice are able to develop extensive expertise with distributed
locking.

Easier Outsourcing
It’s difficult to outsource roles such as development, operations, and
QA with traditional monolithic applications because everything is so
tightly coupled. For example, it might take only a few days for a
third-party system integrator to build a new payment module, but it
will take weeks to set up development environments, learn the pro‐
cess to make changes to the shared database, learn the process for
deploying code, and so on.

Microservices makes it very easy to outsource. Instead of a payment
module, a system integrator could be tasked with creating a payment
microservice, which exposes a clean API. That system integrator
could then build the payment microservice and host it themselves as
a service or hand it over for hosting alongside the other microservi‐
ces. By outsourcing in this manner, dozens or even hundreds of
microservices could be developed in parallel by different vendors,
without much interaction between the different teams.

Rather than hiring a system integrator, APIs can be bought from
third-party software vendors. For example, there are vendors that
offer payment APIs as a service. Or product recommendations as a
service. These vendors can build highly differentiated features as a
service that can simply be consumed as a service.

Security
Security is most often an afterthought with large monolithic applica‐
tions. Inevitably, the application is developed and secured later,
often just in the UI. One application thread, if compromised, can
call any function in the entire application. Even if proper security is
implemented, there’s no real way to enforce that developers use it.
Many developers don’t implement it because the code is complicated
and messy.

Microservices is very different. Each microservice exposes a small
granular bit of business functionality as an API (or two). It’s easy to
see exactly who or what is calling each API. Rather than dealing
with security at the application layer, you can instead use an API
gateway or API load balancer. These products allow you to define

32 | Chapter 2: Introducing Microservices

such things as users, roles, and organizations. Calls from one API to
another pass through the API gateway or API load balancer. Each
request is evaluated against a ruleset to see if it can be passed to the
endpoint. For example, user Jenn in marketing is only allowed to
make HTTP GET requests to the Customers microservice, but the
Orders microservice is allowed to make HTTP POST and GET
requests. You can implement a default deny-all policy in the API
gateway or API load balancer and force all requests to pass through
it.

Microservices is also better from a security standpoint because each
microservice is independently deployed, often to its own private
network within a public cloud. If an attacker manages to access one
microservice, he can’t easily get to other microservices. This is called
bulkheading. If a monolithic application is breached, the attacker
will have access to the entire datastore and all application code.
Much more damage can be done.

The Disadvantages of Microservices
Although microservices certainly has advantages, it has many disad‐
vantages, too. Remember, the goal of microservices is to speed the
delivery of new features. It is not about reducing costs. Getting new
features to market quickly will far more than offset the potentially
higher development costs of microservices.

Outer Complexity Is More Difficult
Microservices is often seen as sacrificing inner for outer complexity.
Monolithic applications are complex on the inside, whereas each
microservice is simple on the inside. The outer complexity of mono‐
lithic applications is simple, whereas the outer complexity of micro‐
services is tricky. This tradeoff allows for each microservice team to
build and deploy new features very quickly. But it comes at the cost
of having to manage interactions between microservices.

Examples of outer complexity introduced by microservices include
the following:

Data synchronization
Synchronously and asynchronously copying data between
microservices.

The Disadvantages of Microservices | 33

Security
Who/what can call each endpoint? What data can be retrieved?
What actions can be performed?

Discovery
What microservices are available? Which messages does a par‐
ticular microservice need to consume?

Versioning
How is a particular API or implementation version of a given
API retrieved?

Data staleness
Which microservice is the real system of record of a given piece
of data?

Debugging is more difficult, too. What if there’s some weird interac‐
tion between version 13.2 of the Shopping Cart microservice and
version 19.1 of the Inventory microservice? Remember that each
microservice can have many dozens of versions live in the same
environment at any time. It is impossible to test out all of the inter‐
actions. And it would be very much against the spirit of microservi‐
ces to centrally test all of the interactions between microservices.

Organizational Maturity
Organizations must have a strong structure, culture, and technical
competency. Let’s explore each.

As we’ve already discussed, an organization’s structure dictates how
it produces software. Centralized organizations oriented around lay‐
ers produce layered monolithic applications. Even simple changes
require extensive coordination across those layers, which adds time.
The proper structure for an organization that wants to create micro‐
services is to reorganize around products. Rather than a VP of oper‐
ations, there should instead be a VP of product catalog, with all of
the product catalog–related microservices rolling up to her. It’s a
fundamental change in thinking, but one that will ultimately pro‐
duce better software. DevOps, which we’ll discuss shortly, is one step
toward tearing down the organizational boundaries between devel‐
opment and operations. If that transition went well, the blurring of
team boundaries won’t be too foreign.

34 | Chapter 2: Introducing Microservices

From a culture standpoint, microservices requires that organiza‐
tions get out of the mindset that IT is simply a cost that must be
minimized. Although there are efficiencies to having centralized
teams manage each layer (development, operations, infrastructure,
etc.), those efficiences come at the cost of coupling, which signifi‐
cantly harms development velocity. The culture of the organization
needs to value development velocity and reactiveness to business
over all else.

Beyond structure and culture, an organization needs to have a
strong understanding of Agile software development, DevOps, and
the cloud. Most microservices teams use some form of Agile to
manage the development of each microservice. It’s difficult to go
from waterfall to Agile. DevOps is a practice by which development
and operations (hence, “DevOps”) work collaboratively or even
interchangeably to support the entire lifecycle of an application.
Each microservice team is responsible for all development and oper‐
ations; thus, DevOps is the operating model. Finally, cloud is a
requirement for microservices. Most microservices are deployed to
the cloud. But, more important, the cloud is distributed by its very
nature and having expertise around distributed computing makes
the transition to microservices easier because everything is dis‐
tributed in microservices.

Duplication
A goal of microservices is not to reduce costs. Even though that can
happen over time, cost savings through consolidation and standard‐
ization is not a benefit of microservice. In a traditional enterprise,
the CIO buys one database, one application server, and so on, and
forces everyone to use it. Many will go a step farther and build one
large database, one large cluster of application servers, and so forth.
This makes a lot of sense if the goal is to reduce cost. But it doesn’t
work with microservices, because it introduces coupling, which
greatly harms speed.

Each microservice team is autonomous and should be able to pick
the best product for each layer. As discussed earlier, each team
should be given a menu of supported products to choose from. For
example, the programming language can be Java, Scala, or Node.js.
The team can purchase formal product support for all of these
options. Rather than one product there are now potentially a hand‐
ful. A lot of cost-focused managers would say “Just use Java,” but

The Disadvantages of Microservices | 35

that could become too constrainting. Languages and runtime each
have their own niche.

Besides the products themselves, the other big form of duplication is
in the instances themselves. It’s technically more efficient to have
one enormous database that the monolithic application or microser‐
vices use. But again, that creates coupling, which harms speed.
When the DBA team needs to take the database down for patching,
everyone must plan around it.

So yes, microservices is not technically the most efficient. Each
microservices team selects, sometimes procures, and always runs
their own stack. But the point of microservices is speed.

Eventual Consistency
One of the biggest issues that enterprises have with microservices is
the fact that not all data is strongly consistent. A product can exist in
20 different microservices, each having a copy of the product from a
different point in time. Enterprises are used to having one single
database for all commerce data, which is strongly consistent—one
copy of the product that is always up to date. This is not the micro‐
services model because it introduces coupling, which harms devel‐
opment velocity.

Within a commerce platform, enterprises have historically expected
that data is strongly consistent. But data has never been consistent
across an entire enterprise. For example, CRM, ERP, and commerce
applications each have their own representation of a customer, with
updates to data being propagated between applications asynchro‐
nously.

Within a microservices-based commerce system, there is always at
least one microservice that has the most up-to-date data. For exam‐
ple, the product microservice owns all product data. But the product
catalog and search microservices might have a cached copy of that
data. Consider using a wiki or some other internal place to docu‐
ment which microservice owns which bit of data.

Testing
Microservices makes testing both easier and more difficult at the
same time. Let’s begin from the developers’ workstation and work
up to production.

36 | Chapter 2: Introducing Microservices

Locally, a developer will need to run unit tests to ensure that code
works in isolation, with as few variables as possible. This testing is
much easier with microservices because the codebase is much
smaller. The entire microservice can be run locally in isolation,
without too much being mocked out. Because developers are real
owners, they have a stronger incentive to write better code and
increase unit testing coverage.

Like unit testing, component testing is fairly easy. Each microservice
is fairly easy to run on its own in an environment. Often, only one
API is exposed. That API can be thoroughly tested on its own.
Events can also be mocked and passed into the microservice to see
how it handles them.

Integration testing in a remote environment becomes tougher with
microservices. It’s no longer just one application that integrates with
a few monolithic applications—it’s dozens, hundreds, or even thou‐
sands of small microservices. Properly testing your microservice’s
functionality often requires writing test scripts that call other micro‐
services to get them to produce events that your microservice con‐
sumes. For example, if you’re testing the Order Status microservice,
you’ll need to first place an order using the Order microservice. This
complexity is the essential tradeoff of microservices—trading inner
complexity for outer complexity. Although integration testing is dif‐
ficult, the faster development velocity gained by microservices
makes this extra work worth it.

Monitoring
Like testing, monitoring becomes both easier and more difficult at
the same time.

The health of each microservice is very easy to assess. It’s the health
of the overall system that’s trickier to assess. If the Order Status
microservice is unavailable and the application is able to gracefully
handle the failure, there’s no problem. But what happens if the
Order microservice is down? Where is the line drawn between
healthy and unhealthy? That line matters because at some point you
need to cut off traffic and fix the problem(s). A monolithic applica‐
tion, on the other hand, is fairly easy to monitor. It’s typically work‐
ing or it’s not.

Another issue that microservices introduces is end-to-end transac‐
tion tracing. Out of the dozens, hundreds or thousands of microser‐

The Disadvantages of Microservices | 37

vices, which one is causing the problem? Once you identify the
microservice, you then have to trace its dependencies. Perhaps a
microservice upstream from it has stopped publishing events. It gets
complicated quickly. If you can implement some technology and
processes, it becomes manageable. But this is what most enterprises
cite as the biggest issue with microservices. Monoliths are slow but
the scope of problems is less.

How to Incrementally Adopt Microservices
There are essentially three different approaches to adopting micro‐
services. Let’s explore them.

Net New
If you’re building a large new commerce platform from scratch, with
hundreds of developers, it makes sense to start using microservices.
In this model, each team is responsible for one microservice
(Figure 2-14). All microservices are on the same level.

Figure 2-14. How you would structure your microservices if you were
starting from scratch

It does not make sense to start with this approach if you’re building
a smaller application or you don’t know whether the complexity will
justify the initial overhead of microservices. Microservices is best
for when you’ll be writing millions of lines of code with hundreds or
even thousands of developers. Do not prematurely optimize.

Extend the Monolith
This is the model that most enterprises will follow. It’s rare to start
from scratch, as you would find in the “Net New” approach. Most
will start out with an existing commerce platform of some sort. In
this model, you write individual microservices that the monolith
then consumes (Figure 2-15).

38 | Chapter 2: Introducing Microservices

Figure 2-15. How you would structure your microservices if you were
starting with an existing monolith

For example, say you need to overhaul pricing in your monolith due
to new business requirements. Rather than doing it in the monolith,
use this as an opportunity to rewrite pricing in a microservice. The
monolith will then call back to the pricing microservice to retrieve
prices.

Over time, more and more functionality is pulled out of the mono‐
lith until it eventually disappears.

This model is the standard operating procedure for most commerce
platforms today. Few do payments, tax calculation, shipping, or rat‐
ings and reviews in-house. It’s all outsourced to a third-party ven‐
dor. Breaking out functionality into separate microservices is the
same model, except that the team behind the API you’re calling hap‐
pens to be part of your company.

Decompose the Monolith
This is the hardest (or potentially the easiest) approach depending
on how your monolithic application was written. If your application
is modular enough, the modules could be pulled out and deployed
as standalone microservices (Figure 2-16).

How to Incrementally Adopt Microservices | 39

Figure 2-16. How to decompose a monolithic modular application into
microservices

The hard part about doing this is that the microservices will all be
written to code to the same database, since there was probably only
one database in the monolithic application.

Again, this is hard to do but well worth it if you can make it work.

Summary
Speed is the currency in today’s fast-paced market. The number of
hours it takes to get a new feature or user interface to market mat‐
ters very much. Microservices is the absolute best architecture for
getting new features and user interfaces to market quickly. There are
many advantages and, yes, a few disadvantages to this architecture,
but overall you’ll find none better for large-scale commerce.

Now that we’ve covered theory, let’s discuss the actual technology
you’ll need to put microservices into practice.

40 | Chapter 2: Introducing Microservices

CHAPTER 3

Inner Architecture

Although technology is an important enabler of microservices, it’s
not the defining characteristic. Microservices is primarily about
building small, cross-functional teams that expose one granular
piece of business functionality to the enterprise. Each team, in its
own self-interest, will naturally pick the best technology to build its
own microservice. This is referred to as inner architecture because its
scope is the inner-workings of a single microservice.

Technically speaking, most of what’s in the microservices technology
ecosystem is not actually necessary to implement microservices. You
could implement microservices by using any technology stack.
Again, microservices is more about organization structure than any
particular technology. Technology is valuable because it helps opera‐
tionalize microservices at scale. A proper monitoring system will
allow you to identify microservices, versions, and instances that are
causing problems.

Almost all of the software used for both inner and outer architecture
is open source. Microservices arose from the hacker community.
The traditional software vendors have been too slow to produce rel‐
evant products in this space. Cloud vendors offer some support, but
both inner and outer stacks are often composed of various open
source products.

Most technology procurement in enterprises is centralized. The CIO
will pick one database, programming language, runtime, or what‐
ever, and force everyone within the organization to use it. Mono‐
lithic applications have one database, programming language,

41

runtime, and so on. In an organization built around minimizing
costs, this strategy makes sense. The procurement department can
squeeze the best prices from the vendors and you can build teams
with very specialized product expertise. But this is completely con‐
trary to the principles of microservices because it forces organiza‐
tions to be horizontally tiered, with each tier focused on a specific
layer. This introduces coupling between teams, which dramatically
slows down development velocity.

Whereas most technology procurement today is centralized, tech‐
nology procurement in microservices is distinctly decentralized. As
discussed in Chapter 2, each team should have enough autonomy to
select its own stack. That freedom comes with responsibility to run
and maintain it, so teams are incentivized to make wise decisions.
Experimenting with some new version 0.02 framework might sound
like fun until it’s your turn to fix a problem at 3 AM on a Sunday
morning. In traditional enterprises, the people who select technol‐
ogy aren’t the ones who actually must support it. They have no per‐
sonal incentive to make conservative decisions.

APIs
Each microservice team exposes one or more APIs out to the world,
so it’s important that those APIs are well designed. However, this
chapter focuses on inner architecture, so we’re going to save the dis‐
cussion on API gateways and API load balancers for Chapter 4, in
which we discuss the outer architecture.

APIs are often HTTP REST, but it is not a requirement. It just hap‐
pens to be a de facto standard because it’s the lowest common
denominator and it’s easy to read.

42 | Chapter 3: Inner Architecture

Which format is preferred? JSON (JavaScript
Object Notation) or XML?
JSON is more compact but more difficult to
read, especially when data is more complex and
more hierarchical. XML is best for more struc‐
tured data, but it’s more verbose. All modern
tooling will work with JSON and XML, but
you’ll probably find a richer ecosystem around
XML due its extensive use.
Either will work just fine. Don’t get pulled into
religious debates—use whichever you feel com‐
fortable with and what works best for your orga‐
nization.

Richardson Maturity Model
Leonard Richardson’s book RESTful Web APIs (O’Reilly, 2013) out‐
lines a four-level maturity model for designing REST APIs. Your
APIs should be modeled as far up this hierarchy as possible in order
to promote reuse.

Level 0: RPC
This is how most begin using REST. HTTP is simply used as a trans‐
port mechanism to shuttle data between two methods—one local,
one remote. This is most often used for monolithic applications.

Let’s take inventory reservation as an example to illustrate each level
of maturity.

To query for inventory, you’d make an HTTP POST to the mono‐
lithic application. In this example, let’s assume that it’s available
behind /App. The application itself is then responsible for parsing
the XML, identifying that the requester is trying to find inventory.
Already, this is problematic because you need a lot of business logic
to determine where to forward the request within the application. In
this example, queryInventory has to be mapped back to a function
that will return inventory levels:

HTTP POST to /App

<queryInventory productId="product12345" />

APIs | 43

http://shop.oreilly.com/product/0636920028468.do

This would be the response you get back:

200 OK

<inventory level="84" />

To reserve inventory, you’d do something like this:

HTTP POST to /App

<reserveInventory>
 <inventory productId="product12345" />
</reserveInventory>

Notice how the only HTTP verb used is POST and you’re only inter‐
acting with the application. There’s no notion of an individual ser‐
vice (/Inventory) or a service plus function (/Inventory/
reserveInventory).

Level 1: resources
Rather than interact with an entire application, level 1 calls for inter‐
acting with specific resources (/Inventory) and objects within those
resources (product12345). The resources map back neatly to micro‐
services.

Here’s how you would query for inventory with level 1:

HTTP POST to /Inventory/product12345

<queryInventory />

Notice how you’re interacting with /Inventory rather than /App.
You’re also directly referencing the product (product12345) in the
URL.

And this is what you get back:

200 OK

<inventory level="84" />

To actually reserve inventory, you’d do the following:

HTTP POST to /Inventory/product12345

<reserveInventory>
 <inventory qty="1" />
</reserveInventory>

Notice how you’re only interacting with /Inventory/product12345
regardless of whether you’re querying for inventory or reserving
inventory. Although this is certainly an improvement over dealing

44 | Chapter 3: Inner Architecture

with /App, it still requires a lot of business logic in your inventory
microservice to parse the input and forward it to the right function
within your microservice.

Level 2: HTTP verbs
Level 2 is a slight improvement over level 1, making use of HTTP
verbs. To date, all HTTP requests have used the POST verb, whether
retrieving or updating data. HTTP verbs are built for exactly this
purpose. HTTP GET is used to retrieve, HTTP PUT/POST is used
to create or update, HTTP DELETE is used to delete.

Going back to our example, you would now use GET rather than
POST to retrieve the current inventory for a product:

HTTP GET to /Inventory/product12345

<inventory level="84" />

Reserving inventory is the same as before:

HTTP POST to /Inventory/product12345

<reserveInventory>
 <inventory qty="1" />
</reserveInventory>

HTTP PUT versus POST is beyond the scope of this discussion.

To create a new inventory record, you’d do the following:

HTTP POST to /Inventory

<createInventory>
 <inventory qty="1" productId="product12345" />
</createInventory>

Rather than a standard HTTP 200 OK response, you’d get back this:

201 Created
Location: /Inventory/product12345

<inventory level="84" />

With the Location of the newly created object returned in the
response, the caller can now programmatically access the new object
without being told its location.

Even though this is an improvement over level 1 in that it introduces
HTTP verbs, you’re still dealing with objects and not individual
functions within those objects.

APIs | 45

Level 3: HATEOAS (Hypertext As The Engine Of Application State)
Level 3 is the highest form of maturity when dealing with REST
interfaces. Level 3 makes full use of HTTP verbs, identifies objects
by URI, and offers guidance on how to programmatically interact
with those objects. The APIs become self-documenting, allowing the
caller of the API to very easily interact with the API and not know
very much about it. This form of self-documentation allows the
server to change URIs without breaking clients.

Level 3/HATEOAS is very difficult to actually
achieve in practice. APIs and consumers of
those APIs are hard to write. But the principles
are valuable to follow.

Let’s go back to our inventory example. To retrieve the inventory
object, you’d call this:

GET /Inventory/product12345

And this is what you’d get back:

200 OK

<inventory level="84">
 <link rel="Inventory.reserveInventory"
 href="/Inventory/reserveInventory" />
 <link rel="Inventory.queryInventory"
 href="/Inventory/queryInventory" />
 <link rel="Inventory.deleteInventory"
 href="/Inventory/deleteInventory" />
 <link rel="Inventory.newInventory"
 href="/Inventory/newInventory" />
</inventory>

Notice how the response includes link tags showing how to perform
all available actions against the inventory object. Callers of the APIs
just need to know Inventory.reserveInventory. From that key,
they can look up the URL (/Inventory/reserveInventory).

Strive to be level 3–compliant but don’t worry if you fall short. This
is a high bar.

REST API Markup Languages
REST API modeling should be one of the few standards with which
each team should be required to comply. Many implementing

46 | Chapter 3: Inner Architecture

microservices adopt a REST API markup language like Swagger or
RAML. These formats are rapidly becoming the standard for REST
APIs, which allows for easier interoperability within a microservices
implementation as well as between microservices across the
industry.

By using one of these standards plus associated tooling, you can do
the following:

• Model each API using a standard format.
• Document each API. Think about it like Javadocs but for REST

APIs. The documentation should be autobuilt and published
with the build of each microservice.

• Edit each API visually and using other advanced tooling.
• Generate client or server-side stubs to match the APIs you’ve

modeled. This dramatically simplifies building and calling
microservices.

Figure 3-1 presents an example of how you would model an API to
reserve inventory using Swagger.

Figure 3-1. Swagger definition

From the YAML definition shown in Figure 3-2, you can generate
server and client-side stubs.

APIs | 47

https://openapis.org
http://raml.org

Figure 3-2. Swagger server stubs

Check these definitions in as source code. Pick the standard and
associated tooling that works best for you. What matters most is that
you use it consistently across all of the microservices you build.

Versioning
As we discussed in Chapter 2, a defining characteristic of microser‐
vices is supporting multiple versions of a microservice in the same
environment at the same time. A microservice can have one or up to
potentially dozens of versions deployed, with clients requesting the
major and sometimes the minor version of an instance of the micro‐
service they’d like to retrieve. This introduces complexities.

The first complexity is in development itself. You need to support
multiple major and minor code branches, with each of those
branches potentially having the standard branches you would expect
when writing software. This requires full use of a feature-rich source
control management system (SCM). Developers must be proficient
at switching between versions and branches within the version.
Even though there’s more complexity, microservices makes this
somewhat easier because the codebase for each microservice is so
small and there’s a lot less coordination within a team because team
sizes are so small.

When you’ve built your microservice, you then need to deploy it to
an environment. Your deployment mechanism should be aware of
the multiple versions of the code you’re running and be able to
quickly pull out a version if it’s not working well. Public cloud ven‐

48 | Chapter 3: Inner Architecture

dors and many microservices platforms are beginning to offer this
functionality.

After you’ve deployed a specific version of a microservice, you need
to advertise its availability to clients. Depending on your approach,
which we’ll cover shortly, you’ll need to allow clients to query for a
specific major and sometimes minor version of an instance of the
microservice that they’d like to retrieve. Monolithic applications are
almost always retrieved behind the same URL, regardless of the
version.

Then, you need to have version-aware autoscaling. Suppose that you
have versions 1, 2, and 3 of a microservice live. Versions 2 and 3
could be getting all of the traffic. Because there’s no traffic going to
version 1, your autoscaling system could kill all instances of it. If a
client later needs to call version 1, your autoscaling system will need
to spin up new capacity in response, which could potentially take
seconds or minutes depending on how long it takes to retrieve and
instantiate the container image.

Finally, monitoring must be all version-aware. Only one version of a
microservice might be causing problems. It’s important to be able to
look at health, performance, and other metrics on a per-version
basis.

Alternate Formats
To this point, we’ve assumed that the underlying protocol is HTTP
and the format is XML or JSON. The combination of HTTP and
XML or JSON works well because it’s human-readable, easily under‐
stood, and can be used natively by established products like proxies
and API gateways.

In theory, you should rarely if ever make synchronous HTTP calls
between microservices, especially if the client is waiting on the
response. In practice, however, it’s all too common.

For the absolute best performance, you can use binary-level trans‐
port systems. Examples include Apache Thrift, Apache Avro, and
Google Protocol Buffers.

For example, Protocol Buffers from Google are 3 to 10 times smaller
and 20 to 100 times faster than XML. Rather than human readabil‐
ity, these implementations are optimized for performance.

APIs | 49

http://bit.ly/1kOjQVS
http://bit.ly/1kOjQVS

Containers
Containers are an important part of most microservices deploy‐
ments. Containers are not required for microservices but they’ve
both come of age at about the same time and they’re extremely
complementary.

This section will be about containers for a single microservice. In
the next section, in which we cover outer complexity, we’ll discuss
how you deploy and orchestrate containers, which is perhaps their
biggest value.

The value for each microservice team is that they can neatly package
up their microservices into one or more containers. They can then
promote those containers through environments as atomic, immut‐
able, units of code/configuration/runtime/system libraries/operating
system/start-and-stop hooks. A container deployed locally will run
the exact same way in a production environment.

In addition to application packaging, containers are also extremely
lightweight, often just being a few hundred megabytes in size versus
virtual machine (VM) images, which often are multiple gigabytes.
When a container is instantiated, a thin writable layer is created over
the top of the base container image. Because of their small size and
the innovative approach to instantiation, a new container can be
provisioned and running in a few milliseconds as opposed to the
many minutes it takes to instantiate a VM. This makes it easier for
developers to run microservices locally and for individual microser‐
vices to rapidly scale up and down in near real-time response to
traffic. Many containers live for just a few hours. Google launches
two billion containers a week, with more than 3,000 started per sec‐
ond, not including long-running containers. Many containers live
for just a few seconds. There’s such little overhead to provision and
later kill a container.

In the case of Docker, you build containers declaratively by using
Dockerfiles. Dockerfiles are are simple YAML (YAML Ain’t Markup
Language) scripts that define the base Docker image, along with any
commands required to install/configure/run your software and its
dependencies. Here’s a very simple example:

FROM centos:centos6

Enable Extra Packages for Enterprise Linux (EPEL) for CentOS
RUN yum install -y epel-release

50 | Chapter 3: Inner Architecture

http://bit.ly/2dAAY8U
http://bit.ly/2dAAY8U
http://bit.ly/2dAAY8U

Install Node.js and npm
RUN yum install -y nodejs npm

Install app dependencies
COPY package.json /src/package.json
RUN cd /src; npm install

Bundle app source
COPY . /src

EXPOSE 8080
CMD ["node", "/Inventory/index.js"]

Simply build by running $ docker build -f /path/to/a/Docker
file . The output is an image that can be instantiated as a con‐
tainer in a few milliseconds. Containers should always be immutable
once built. If you have to deploy a new version of your code, change
your application’s configuration, or set an environment variable, you
should update your Dockerfile, rebuild your image, and deploy a
new version. Never update a live running container. Immutable
infrastructure is crucial to repeatable testing across environments.
With immutable containers, you know that an individual container
will run the exact same locally as in production.

Lightweight Runtimes
Remember that each microservice is fairly small and uncomplicated.
The runtime required to run a 5,000 line application is very different
than would be required for a 10,000,000 line application. The large
application has 2,000 times more code, which could be using hun‐
dreds of advanced features like distributed database transactions.
Because of this reduced complexity, you can easily use smaller,
lighter, faster runtimes. Many of these runtimes are a few megabytes
in size and can be started in a few milliseconds.

Circuit Breakers
Calls from one microservice to another should always be routed
through a circuit breaker such as Hystrix from Netflix. Circuit break‐
ers are a form of bulkheading in that they isolate failures.

If Microservice A synchronously calls Microservice B without going
through a circuit breaker, and Microservice B fails, Microservice A
is likely to fail as well. Failure is likely because Microservice A’s

Lightweight Runtimes | 51

request-handling threads end up getting stuck waiting on a response
from Microservice B. This is easily solved through the use of a cir‐
cuit breaker.

A circuit breaker uses active, passive, or active plus passive monitor‐
ing to keep tabs on the health of the microservice you’re calling.
Active monitoring can probe the health of a remote microservice on
a scheduled basis, whereas passive monitoring can monitor how
requests to a remote microservice are performing. If a microservice
you’re calling is having trouble, the circuit breaker will stop making
calls to it. Calling an endpoint that is having trouble only exacer‐
bates its problems and ties up valuable request-handling threads.

To further protect callers from downstream issues, circuit breakers
often have their own threadpool. The request-handling thread
makes a request to connect to the remote microservice. Upon
approval, the circuit breaker itself, using its own thread from its own
pool, makes the call. If the call is unsuccessful, the circuit breaker
thread ends up being blocked and the request-handling thread is
able to gracefully fail. Figure 3-3 presents an overview of how a cir‐
cuit breaker functions.

Figure 3-3. Circuit breakers are required for microservices

The use of a circuit breaker should be one of the few mandates to
which all microservices teams should have to adhere.

52 | Chapter 3: Inner Architecture

Polyglot
Polyglot simply means that you can use multiple languages to write
microservices. Each microservice is often implemented using just
one language. Many see it as a defining characteristic.

As we discussed in Chapter 2, each microservice team should have
some freedom in selecting the language/runtime for its own micro‐
service. A team writing a microservice for inventory might want to
use Node.js because of its ability to gracefully increment and decre‐
ment a number without locking. A team writing a product recom‐
mendations microservice might want to use R, for its ability to work
with statistics. A team writing a chat microservice might want to use
Erlang, for its inherent clustering abilities. Each team should have
some choice in the programming language and runtime; for exam‐
ple, they should not all be forced to use Java or .NET.

That being said, you should not allow teams to select just any pro‐
gramming language and runtime they want. Instead, you should
provide a list from which they can select. For example, Java and
Node.js could be the general purpose language, whereas C++ and
Go could be for microservices requiring high performance. Enter‐
prises can contract with a handful of vendors for licensing and sup‐
port. This compromise should offer teams the flexibility they need,
while not creating too much of a headache for enterprises.

Software-Based Infrastructure
Operating in a cloud is a requirement for microservices because it
allows each team to consume its own infrastructure, platform, and
software, all as a service. Remember, each microservice team needs
to own its entire stack and not be dependent on any other teams.
Before the cloud, centralized IT teams were required to support
each layer—compute, network, storage, and so on. Due to Conway’s
Law, this naturally led to large monolithic applications. What used
to take months of work by a specialized team can now be performed
by a single API call with less specialized individuals on a microser‐
vice team.

Each team should treat their infrastructure as essentially “disposa‐
ble.” There’s an old “Cattle versus Pets” meme coined by Randy Bias
that’s illustrative of this principle. If you have 1,000 cattle in a herd
and one of them breaks its leg, you euthanize it. It doesn’t have a

Polyglot | 53

name, it doesn’t sleep in your bed, your kids don’t wish it a happy
birthday. It’s a cow that’s indistinguishable from its 999 peers in the
same herd. A pet, on the other hand, is different. People will run up
massive veterinarian bills to fix a pet’s broken leg. It’s a pet—it has a
name, it spends time with your family, your kids celebrate its birth‐
day. This isn’t a perfect analogy, because cattle are worth thousands
of dollars, but the larger point Bias is trying to make about the cloud
is spot-on—stop treating your servers like pets. Containers deployed
to the cloud have IPs and ports that are not known, and when they
have problems, they are killed. They lead short anonymous lives.
What matters is the aggregate throughput—not the fate of any single
instance.

As part of achieving disposable infrastructure, HTTP session state
(login status, cart, pages visited, etc.) should be persisted to a third-
party system, like a cache grid. None of it should be persisted to a
container, because a container might live for only for a few seconds.
Remember that each microservice must exclusively own its data.
Multiple microservices can share the same store, but each must have
its own partition. One microservice cannot access the state of
another microservice.

A microservice’s configuration could be packed into the container or
it can be externalized and pulled by the microservice as required. It’s
best to place the configuration inside the container so that the con‐
tainer itself runs exactly the same regardless of its environment. It’s
difficult to ensure repeatability if the configuration can be modified
at runtime.

Sometimes microservices have singletons. These singletons can be
used for distributing locks, synchronously processing data (e.g.,
orders), generating sequential numbers, and so on. In the days of
static infrastructure, this was easy—you’d have a singleton that was
behind a static IP address that never changed. But in the cloud,
where containers might live for only for seconds, it’s impossible to
have named long-lived singletons that are always available. Instead,
it’s best to employ some form of leader election, in which singletons
are named at runtime.

54 | Chapter 3: Inner Architecture

CHAPTER 4

Outer Architecture

The outer architecture is the space between microservices and is by
far the most difficult part. As we’ve pointed out throughout this
book, microservices is a tradeoff from inner complexity to outer
complexity. Broadly speaking, the outer architecture of microservi‐
ces is the space between individual microservices. Think of it as any‐
thing that is not the responsibility of an individual microservice
team.

Outer architecture includes all of the infrastructure on which indi‐
vidual microservices are deployed, discovering and connecting to
microservices, and releasing new versions of microservices, commu‐
nicating between microservices, and security. It’s a wide area that
can become complex.

Outer architecture is best handled by a single team that is composed
of your best programmers. You don’t need a big team—you need a
small team of people who are really smart.

There is no number of ordinary eight-year-olds who, when organ‐
ized into a team, will become smart enough to beat a grandmaster
in chess.

—Scott Alexander, 2015

Your goal should be to free up each microservice team to focus on
just its own microservice.

Part of what complicates outer architecture is that most of the tech‐
nology is brand new. The term “microservices” wasn’t used widely
until 2013. The technology that powers the inner architecture is all

55

http://slatestarcodex.com/2015/12/27/things-that-are-not-superintelligences/

widely established. After all, an individual microservice is just a
small application.

Software-Based Infrastructure
Although each microservice team can choose its own programming
language, runtime, datastore, and other upper-stack elements, all
teams should be constrained to using the same cloud provider. The
major cloud platforms are all “good enough” these days, both in
terms of technical and commercial features.

The first major benefit is that multiple teams can access the same
shared resources, like messaging, API gateways, and service discov‐
ery. Even though each team has the ability to make some choices
independently, you generally want to standardize on some things
across teams; for example, the messaging system. You wouldn’t want
100 different teams each using its own messaging stack—it just
wouldn’t work. Instead, a centralized team must choose one imple‐
mentation and have all of the microservices teams use it. It doesn’t
make sense to fragment at that level and it’s difficult to implement.
An added advantage of everyone using the same implementations is
that latency tends to be near zero.

By standardizing on a cloud vendor, your organization has the abil‐
ity to build competency with one of them. Public clouds are not
standardized and specialized knowledge is required to fully use each
cloud. Individuals can build competency, which is applicable regard‐
less of the team to which they’re assigned. Teams can also publish
blueprints and best practices that others can use to get started.

Working across clouds adds unnecessary complexity and you should
avoid doing it.

Container Orchestration
Containers are used by individual teams to build and deploy their
own microservices, as part of inner architecture. Container orches‐
tration is the outer architecture of microservices.

Simply put, container orchestration is the system that runs individ‐
ual containers on physical or virtual hosts. Managing a handful of
containers from the command line is fairly straightforward. You
SSH into the server, install Docker, run your container image, and

56 | Chapter 4: Outer Architecture

expose your application’s host/port. Simple. But that doesn’t work
with any more than a handful of containers. You might have dozens,
hundreds or even thousands of microservices, with each microser‐
vice having multiple versions and multiple instances per version. It
just doesn’t scale.

These systems can also be responsible for the following:

• Releasing new versions of your code
• Deploy the code to a staging environment
• Run all integration tests
• Deploy the code to a production environment
• Service registry—making a microservice discoverable and rout‐

ing the caller to the best instance
• Load balancing—both within a node and across multiple nodes
• Networking—overlay networks and dynamic firewalls
• Autoscaling—adding and subtracting containers to deal with

load
• Storage—create and attach existing volumes to containers
• Security—identification, authorization and authentication

Each of these topics will be covered in greater depth in the sections
that follow.

Container orchestration is essentially a new form of Platform-as-a-
Service (PaaS) that many use in combination with microservices.
The container itself becomes the artifact that the container orches‐
tration system manages, which makes it extremely flexible. You can
put anything you want in a container. Traditionally, a PaaS is consid‐
ered “opinionated” in that it forces you do things using a very pre‐
scribed approach. Container orchestration systems are much less
opinionated and are more flexible.

Besides flexibility, infrastructure utilization is a top driving factor
for container orchestration adoption. Virtual Machines (VMs), even
in the cloud, have fixed CPU and memory, whereas multiple con‐
tainers deployed to a single host share CPU and memory. The con‐
tainer orchestration system is responsible for ensuring that each
host (whether physical or virtual) isn’t overtaxed. Utilization can be
kept at 90 or 95 percent, whereas VMs are typically 10 percent uti‐

Container Orchestration | 57

lized. If utilization of a host reaches near 100 percent, containers can
be killed and restarted on another, less-loaded host.

Container orchestration, like the cloud, is a system that every team
should be forced to use. These systems are extremely difficult to set
up, deploy, and manage. After it is set up, the marginal cost to add a
new microservice is basically zero. Each microservice team is able to
easily use the system.

Let’s explore some of the many roles that container orchestration
systems can play.

Releasing Code
Each team must continually release new versions of its code. Each
team is responsible for building and deploying its own containers,
but they do so using the container orchestration system. Every team
should release code using the same process. The artifacts should be
containers that, like microservices, do only one thing. For example,
your application should be in one container and your datastore
should be in another. Container orchestration systems are all built
around the assumption of a container running just one thing.

To begin, you need to build a container image, inclusive of code/
configuration/runtime/system libraries/operating system/start-and-
stop hooks. As we previously discussed, this is best done through a
Dockerfile YAML that is checked in to source control and managed
like source code. The Dockerfile should be tested on a regular basis.
It should be upgraded. The start/stop hook scripts should be tested,
too.

After you’ve built your image, you need to define success/failure cri‐
teria. For example, what automated tests can you run to verify that
the deployment was successful? It’s best to throughly test out every
API, both through the API and through any calling clients. What
constitutes a failure? If an inconsequential function isn’t working,
should the entire release be pulled?

Then, you need to define your rollout strategy. Are you replacing an
existing implementation of a microservice that’s backward compati‐
ble with the existing version? Or, are you rolling out a new major
version that is not backward compatible? Should the deployment
proceed in one operation (often called “blue/green”), or should it be
phased in gradually, at say 10 percent per hour (often called “can‐

58 | Chapter 4: Outer Architecture

ary”)? How many regions should it be deployed to? How many fault
domains? How many datacenters? Which datacenters?

Following the deployment, the container orchestration system then
must update load balancers with the new routes, cutover traffic, and
then run the container’s start/stop hooks.

As you can see, this all can become quite complicated. With a proper
container orchestration system and some experience, releases can be
as carried out often as every few hours. Again, it takes a small team
of very specialized people to build the container orchestration sys‐
tem. Then, individual teams can use it.

Service Registry
When the container orchestration system places a container on a
host, clients need to be able to call it. But there are a few complicat‐
ing factors:

• Containers might live for only a few seconds, minutes, or hours.
They are ephemeral by definition.

• Containers often expose nonstandard ports. For example, you
might not always be able to hit HTTP over port 80.

• A microservice is likely to have many major and minor versions
live at the same time, requiring the client to state a version in
the request.

• There are dozens, hundreds or even thousands of different
microservices.

There are two basic approaches: client-side and server-side.

The client-side approach is straightforward conceptually. The client
(be it an API gateway, another microservice, or a user interface)
queries a standalone service registry to ask for the path to a fully
qualified endpoint. Again, the client should be able to specify the
major and possibly the minor version of the microservice for which
it’s looking. The client will get back a fully qualified path to an
instance of that microservice, which it can then call over and over
again.

The main benefit of this approach is that there are no intermediaries
between the client and the endpoint. Calls go directly from the client
to the endpoint without traversing through a proxy. Also, clients can

Container Orchestration | 59

be more rich in how they query for an endpoint. The query could be
a formal JSON document stating version and other quality-of-
service preferences, depending on the sophistication of your service
registry.

The major drawback of this approach is that the client must “learn”
how to query each microservice, which is a form of coupling. It’s not
transparent. Each microservice will have its own semantics about
how it needs to be queried because each microservice implementa‐
tion will differ. Another issue is that the client will need to requery
for an endpoint if the one it’s communicating with directly fails.

Although the client-side approach can be helpful, the server-side
method is often preferable due to its simplicity and extensive use in
the world today. This approach is to basically use a load balancer.
When the container orchestration places a container, it registers the
endpoint with the load balancer. The client can make some requests
about the endpoint by specifying HTTP headers or similar.

Unlike client-side load balancing, the client doesn’t need to know
how to query for an endpoint. The load balancer just picks the best
endpoint. It’s very simple.

Load Balancing
If you use a server-side service registry, you’ll need a load balancer.
Every time a container is placed, the load balancer needs to be upda‐
ted with the IP, port and other metadata of the newly-created
endpoint.

There are two levels of load balancing within a container orchestra‐
tion system: local and remote.

Local load balancing is load balancing within a single host. A host
can be a physical server or it can be virtualized. A host runs one or
more containers. Your container orchestration system might be
capable of deploying instances of microservices that regularly com‐
municate to the same physical host. Figure 4-1 presents an overview.

60 | Chapter 4: Outer Architecture

Figure 4-1. Local load balancing within a single host

By being told or by learning that certain microservices communi‐
cate, and by intelligently placing those containers together on the
same host, you can minimize the vast majority of network traffic
because most of it is local to a single host. Networking can also be
dramatically simplified because it’s all over localhost. Latency is zero,
which helps improve performance.

In addition to local load balancing, remote load balancing is what
you’d expect. It’s a standalone load balancer that is used to route traf‐
fic across multiple hosts.

Look for products specifically marketed as “API load balancers.”
They’re often built on traditional web servers, but they are built
more specifically for APIs. They can support identification, authen‐
tication, and authorization-related security concerns. They can
cache entire responses where appropriate. And finally, they have
better support for versioning.

Networking
Placed on a physical host, the container needs to join a network.
One of the benefits of the modern cloud is that everything is just
software, including networks. Creating a network is now as simple
as invoking it, as shown here:

$ docker network create pricing_microservice_network

With this new “pricing_microservice_network” network created,
you can run a container and hook up its network to the container:

Container Orchestration | 61

$ docker run -itd corp/pricing_microservice
 --network=pricing_microservice_network
 --name Pricing Microservice

Of course, container orchestration does this all at scale, which is part
of the value. Your networking can become quite advanced depend‐
ing on the container orchestration you use. What matters is that you
define separate, isolated networks for each tier of each microservice,
as demonstrated in Figure 4-2.

Figure 4-2. Software-based overlay networks are required for full isola‐
tion and proper bulkheading

Proper use of overlay networks is another form of bulkheading,
which limits the damage someone can do if they break into a net‐
work. Someone can break into your Inventory microservice’s appli‐
cation network and not have access to the Payment microservice’s
database network.

As part of networking, container orchestration can also deploy
software-based firewalls. By default, there should be absolutely no
network connectivity between microservices. But if your shopping
cart microservice needs to pull up-to-date inventory before check‐

62 | Chapter 4: Outer Architecture

out, you should configure your container orchestration system to
automatically expose port 443 on your inventory microservice and
permit only the Shopping Cart microservice to call it over Transport
Layer Security (TLS). Exceptions should be made on a per-
microservice basis. You would never set up a microservice to be
exposed to accept traffic from any source.

Finally, you want to ensure that the transport layer between micro‐
services is secured by using TLS or alternate. For example, never
allow plain HTTP traffic within your network.

Autoscaling
Commerce is unique in the spikiness of traffic. Figure 4-3 shows the
number of page views per second over the course of the month of
November for a leading US retailer:

Figure 4-3. Commerce traffic is spiky

This is only web traffic. If this retailer were to be fully omnichannel,
the spikes would be even more dramatic.

Before cloud and containers, this problem was handled by over-
provisioning so that at steady state the system would be a few per‐
cent utilized. This practice is beyond wasteful and is no longer
necessary.

The cloud and its autoscaling capabilities help but VMs take a few
minutes to spin up. Spikes of traffic happen over just a few seconds,
when a celebrity with 50 million followers publishes a link to your
website over social media. You don’t have minutes.

Container Orchestration | 63

Containers help because they can be provisioned in just a few milli‐
seconds. The hosts on which the containers run are preprovisioned
already. The container orchestration system just needs to instantiate
some containers.

Note that autoscaling needs to be version-aware. For example, ver‐
sions 2.23 and 3.1 of your pricing microservice need to be individu‐
ally autoscaled.

Storage
Like networking, storage is all software-defined, as well.

Containers themselves are mostly immutable. You shouldn’t write
any files to the local container. Anything persistent should be writ‐
ten to a remote volume that is redundant, highly available, backed
up, and so on. Those remote volumes are often cloud-based storage
services.

Defining volumes for each microservice and then attaching the right
volumes to the right containers at the right place is a tricky problem.

Security
Network-level security is absolutely necessary. But you need an
additional layer of security on top of that.

There are three levels: identification, authentication, and authoriza‐
tion. Identification forces every user to identify itself. Users can be
humans, user interfaces, API gateways, or other microservices. Iden‐
tification is often through a user name or public key. After a user has
identified itself, the user must then be authenticated. Authentication
verifies that the user is who it claims it is. Authentication often
occurs through a password or a private key. After it has been identi‐
fied and authenticated, a user must have authorization to perform
an action.

Every caller of a microservice must be properly identified, authenti‐
cated, and authorized, even “within” the network. One microservice
can be compromised. You don’t want someone launching an attack
from the compromised microservice.

64 | Chapter 4: Outer Architecture

API Gateway
A web page or screen on a mobile device might require retrieving
data from dozens of different microservices. Each of those clients
will need data tailored to it. For example, a web page might display
20 of a product’s attributes but an Apple Watch might display only
one.

You’ll want an API gateway of some sort to serve as the intermedi‐
ary, as depicted in Figure 4-4.

Figure 4-4. Aggregator pattern

The client makes the call to the API gateway and the API gateway
makes concurrent requests to each of the microservices required to
build a single response. The client gets back one tailored representa‐
tion of the data. API gateways are often called “Backends for your
frontend.”

When you call APIs, you need to query only for what you want. A
product record might have 100 properties. Some of those properties
are only relevant to the warehouse. Some are only relevant to physi‐
cal stores. Remember, microservices are meant to be omnichannel.
When you want to display a product description on an Apple
Watch, you don’t want the client to retrieve all 100 properties. You
don’t even want the API gateway to retrieve those 100 properties
from the Product microservice because of the performance hit.
Instead, each layer should be making API calls (client → API gate‐
way, API gateway → each microservice) that specify which proper‐
ties to return. This too creates coupling because the layer above now
needs to know more details about your service. But it’s probably
worth it.

API Gateway | 65

The issue with API gateways is that they become tightly coupled
monoliths because they need to know how to interact with every cli‐
ent (dozens) and every microservice (dozens, hundreds or even
thousands). The very problem you sought to remedy with microser‐
vices can reappear if you’re not careful.

Eventing
We’ve mostly discussed API calls into microservices. Clients, API
gateways, and other microservices might synchronously call into a
microservice and ask for the current inventory level for a product,
or for a customer’s order history, for example.

But behind the synchronous API calls, there’s an entire ecosystem of
data that’s being passed around asynchronously. Every time a cus‐
tomer’s order is updated in the Order microservice, a copy should
go out as an event. Refunds should be thrown up as events. Eventing
is far better than synchronous API calls because it can buffer mes‐
sages until the microservice is able to process them. It prevents out‐
ages by reducing tight coupling.

In addition to actual data belonging to microservices, system events
are also represented as microservices. Log messages are streamed
out as events—the container orchestration system should send out
an event every time a container is launched; every time a health‐
check fails, an event should go out. Everything is an event in a
microservices ecosystem.

Why is it called “eventing” and not “messaging”?
An event is essentially a message, but with one
key difference: volume. Traditionally, messages
were used exclusively to pass data. In a micro‐
services ecosystem, everything is an event.
Modern eventing systems can handle millions or
tens of millions of events per second. Messaging
is meant for much lower throughput. Although
this is more characteristic of implementations,
normal messaging tends to be durable and
ordered. It’s usually brokered. Eventing is often
unordered and often nonbrokered.

66 | Chapter 4: Outer Architecture

A key challenge with Service Oriented Architecture (SOA) is that
messages were routed through a centralized Enterprise Service Bus
(ESB), which was too “intelligent.”

The microservice community favours an alternative approach:
smart endpoints and dumb pipes.

—Martin Fowler, 2014

In this model, the microservices themselves hold all of the intelli‐
gence—not the “pipes,” like an ESB. In a microservices ecosystem,
events shouldn’t be touched between the producer and consumer.
Pipes should be dumb.

Idempotency is also an important concept in microservices. It
means that an event can be delivered and consumed more than once
and it will not change the output.

This example is not idempotent:

<credit>
 <amount>100</amount>
 <forAccount>1234</account>
</credit>

This event is idempotent:

<credit>
 <amount>100</amount>
 <forAccount>1234</account>
 <creditMemoID>4567</creditMemoId>
</credit>

Summary
Microservices is revolutionizing how commerce platforms are built
by allowing dozens, hundreds, or even thousands of teams to seam‐
lessly work in parallel. New features can be released in hours rather
than months.

As with any technology, there are drawbacks. Microservices does
add complexity, specifically outer complexity. The enabling technol‐
ogy surrounding microservices is rapidly maturing and will become
easier over time.

Overall, microservices is probably worth it if your application is suf‐
ficiently complex and you have the organizational maturity. Give it a
try. It’s a new world out there.

Summary | 67

http://martinfowler.com/articles/microservices.html

About the Author
Kelly Goetsch is chief product officer at commercetools, where he
oversees product management, development, and delivery. He came
to commercetools from Oracle, where he led product management
for its microservices initiatives. Kelly held senior-level business and
go-to-market responsibilities for key Oracle cloud products repre‐
senting nine-plus figures of revenue for Oracle.

Prior to Oracle, he was a senior architect at ATG (acquired by Ora‐
cle), where he was instrumental to 31 large-scale ATG implementa‐
tions. In his last years at ATG, he oversaw all of Walmart’s
implementations of ATG around the world. He holds a bachelor’s
degree in entrepreneurship and a master’s degree in management
information systems, both from the University of Illinois at Chicago.
He holds three patents, including one key to distributed computing.

Kelly has expertise in commerce, microservices, and distributed
computing, and speaks and publishes extensively on these topics. He
is also the author of the book on the intersection of commerce and
cloud, eCommerce in the Cloud: Bringing Elasticity to eCommerce
(O’Reilly, 2014).

http://shop.oreilly.com/product/0636920032571.do

	Cover
	commercetools
	Copyright
	Table of Contents
	Foreword
	Chapter 1. A New Commerce Landscape
	Changing Consumer Demands
	A Brand Experience—Not Simply a Transaction
	Consistency of Experience Across Channels
	Value-Added Features
	Convenience
	Retailers (and Everyone Else) Are Now Powered by Software

	The Status Quo Is Too Slow
	IT Is Seen as an Expense to be Minimized
	Organization Structure
	Coupling
	Packaged Applications

	(Real) Omnichannel Is the Future

	Chapter 2. Introducing Microservices
	Origins of Microservices
	Introducing Microservices
	Inner versus Outer Complexity
	Defining Microservices
	Eventual Consistency

	Advantages of Microservices
	Faster Time to Market
	True Omnichannel Commerce
	Better and Less Complex Code
	Accountability
	Enhanced Domain Expertise
	Easier Outsourcing
	Security

	The Disadvantages of Microservices
	Outer Complexity Is More Difficult
	Organizational Maturity
	Duplication
	Eventual Consistency
	Testing
	Monitoring

	How to Incrementally Adopt Microservices
	Net New
	Extend the Monolith
	Decompose the Monolith

	Summary

	Chapter 3. Inner Architecture
	APIs
	Richardson Maturity Model
	REST API Markup Languages
	Versioning
	Alternate Formats

	Containers
	Lightweight Runtimes
	Circuit Breakers
	Polyglot
	Software-Based Infrastructure

	Chapter 4. Outer Architecture
	Software-Based Infrastructure
	Container Orchestration
	Releasing Code
	Service Registry
	Load Balancing
	Networking
	Autoscaling
	Storage
	Security

	API Gateway
	Eventing
	Summary

	About the Author

