A guide to: Rules Engines

Seven Automation Technologies For the Internet of Things
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>What this guide is</td>
<td>1</td>
</tr>
<tr>
<td>What this guide is not</td>
<td>2</td>
</tr>
<tr>
<td>How to read this guide</td>
<td>2</td>
</tr>
<tr>
<td>Benchmark criteria</td>
<td>3</td>
</tr>
<tr>
<td>Rules engines evaluated in the benchmark</td>
<td>4</td>
</tr>
<tr>
<td>Forward Chaining Engines</td>
<td>5</td>
</tr>
<tr>
<td>Condition-Action Engines</td>
<td>8</td>
</tr>
<tr>
<td>Flow Processing Engines</td>
<td>10</td>
</tr>
<tr>
<td>Side note on flow engines: Node-RED</td>
<td>12</td>
</tr>
<tr>
<td>Decision Trees / Decision Tables</td>
<td>13</td>
</tr>
<tr>
<td>Stream Processing Engines</td>
<td>16</td>
</tr>
<tr>
<td>CEP Engines</td>
<td>19</td>
</tr>
<tr>
<td>Finite State Machines</td>
<td>21</td>
</tr>
<tr>
<td>The Waylay Engine</td>
<td>23</td>
</tr>
<tr>
<td>Conclusion</td>
<td>27</td>
</tr>
</tbody>
</table>
Introduction

IoT application design is quite different from typical IT solutions, in that it bridges the physical world of Operations Technology (OT) with sensors, actuators and communication devices, and the digital world of Information Technology (IT) with data, analytics and workflows.

In an enterprise environment, IoT is very complex, not only because IoT deployments in large organisations will almost certainly need to quickly scale to thousands and then hundreds of thousands of devices (or sensors) and more, but also because the solution needs to work across all other enterprise systems and comply with specific enterprise software requirements.

This bridging of two worlds has important and unique consequences over how business logic and business rules are built within the IoT application. This guide is discussing different rules engine technologies that can be used in the IoT domain. The term rules engine is used quite loosely, to refer to automation technologies in general, not just typical business rules engines (BREs).

What this guide is

This guide is the second part of a two-part evaluation of automation technologies in the IoT domain. The first part of the series: How to Choose a Rules Engine, explains why using a rules engine from the get-go is preferable to hard coding rules, even though the latter option may initially seem more appealing. It then defines a seven-point benchmark that Developers and Architects can use as a guiding reference to choose the right rules engine technology for their IoT use case.

This guide takes the most common types of rules engines that can be used in the IoT domain and evaluates them against the seven-point benchmark defined in How to Choose a Rules Engine, giving them a 0-100 score. This guide is written for Enterprise Architects and Developers who are involved in IoT solution development and already understand the need for an automation framework for IoT application development.

It is based on our team’s experience of over 20 years in software automation technologies and maps the capabilities of the most common rules engine technologies to the requirements of IoT.
What this guide is not

This guide is not a vendor comparison sheet. It considers automation technologies, not specific implementations of these technologies.

Short references to specific tools are made throughout the paper, such as Node-RED being referenced when discussing flow processing engines or ifttt.com being referenced when discussing condition-action engines. These references are only made to show the extent to which a specific implementation can differ from its generic technology category.

How to read this guide

The main body of this guide is made up of detailed explanations for the given scores. The guide is therefore not meant to be read linearly, but rather should serve as a reference to check out the scores once you have identified which of the seven rules engines is the one that best suits your needs.

Here is how to do that:

1. Identify a specific IoT use case and its key requirements
2. Choose which of the seven criteria for evaluating a rules engine are most relevant to your use case’s requirements.
 (E.g. One use case may not require modeling high order logic, while for another use case the time dimension may be completely irrelevant)
3. Check out the table below to find the technology that scores highest for your chosen criteria.

Once you found the rules engines that best suit your IoT use case, go to that section for a full explanation of the scores received.
Benchmark criteria

TECHNOLOGY-SPECIFIC

1. Modeling complex logic
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

2. Modeling time
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

3. Modeling uncertainty
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

IMPLEMENTATION-SPECIFIC

4. Explainability
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities, during design time and at runtime

5. Adaptability
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

6. Operability
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mngt across groups of rules, useful for updates or end-of-life

7. Architecture Scalability (sharding and distributed computing)

(For a detailed presentation of this seven-point benchmark, please download our e-guide: How To Choose A Rules Engine for IoT)
Rules engines evaluated in the benchmark

1. **Rules engines based on Forward Chaining algorithms.** Most of the IoT platforms on the market today have a rules engine of this type: Redhat Drools, Cumulocity, Eclipse Smart Home, AWS rule engine, Thingsboard etc.

2. **Condition/action rules engines supporting if/then or if/then/else patterns.** Even though they are using just one conditional statement, they could also be considered under the forward chaining category, but we will be evaluating them separately, as most of the scores for FC engines do not apply to them. A popular example for this group of engines is the IoT digital service ifttt.com.

3. **Rules engines based on Flow-based programming (FBP) invented by J. Paul Morrison in the 1960s at IBM, with the most notable examples being Yahoo! Pipes and Node-RED.** Most of the SaaS automation rules engines are of this type. With a side-note explanation on where Node-RED differs from the general FBP category

4. **Stream Processing rules engines** process data in motion, directly as it is produced or received. Examples are Apache Storm, Flink, Samza etc

5. **Complex Event Processing (CEP) engines** are the predecessors of stream processing engines and differ from them in the way they handle events. They are mostly deployed in edge computing, examples of vendors being WSO2, Litmus or Foghorn.

6. **Finite-state machines (FSM).** A state is a description of the status of a system that is waiting to execute a transition. A transition is a set of actions to be executed when a condition is fulfilled or when an event is received. Business Rules Engines (BRE) are an example of FSM, allowing non-programmers to change the business logic in a business process management (BPM) system. Another example is AWS Step functions, which translates workflows into state machine diagrams. IoT Explorer from Salesforce is also an FSM-based rules engine.

7. **Decision trees (decision tables)** are a concise visual representation for specifying which actions to perform depending on given conditions. They are algorithms whose output is a set of actions. The information expressed in decision tables could also be represented as decision trees or in a programming language as a series of if-then-else and switch-case statements.

8. **The Waylay Rules Engine** is an inference engine that is built on a unique vision that combines two key artificial intelligence concepts - Bayesian Networks and the Smart Agent concept. ("Tool for modelling, instantiating and/or executing a bayesian agent in an application")
Forward Chaining Engines

An inference engine using forward chaining (FC) applies a set of rules and facts to deduce conclusions, searching the rules until it finds one where the IF clause is known to be true. The process of matching new or existing facts against rules is called pattern matching, which FC inference engines perform through various algorithms, such as Linear, Rete, Treat, Leaps etc.

When a condition is found to be TRUE, the engine executes the THEN clause, which results in new information being added to its dataset. In other words, the engine starts with a number of facts and applies rules to derive all possible conclusions from those facts. This is where the name “forward chaining” comes from - the fact that the inference engine starts with the data and reasons its way forward to the answer, as opposed to backward chaining, which works the other way around.

Sidenote on backward chaining

In backward chaining, the system works from conclusions backwards towards the facts, an approach called goal driven. Compared to forward chaining, few data are asked, but many rules are searched. We have made a conscious choice not to consider backward-chaining rules in this benchmark as they are not suited for dynamic situations and are mostly only used as expert systems in decision making.

1. **Modeling complex logic (40/100)**
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

Combining multiple non-binary outcomes of functions (observations) in the rule is not possible, since conditions are applied on Boolean (true/false) outcomes.

FC engines “collapse” on the majority voting requirement almost immediately, since they search inference rules until they find one or multiple where the IF clause is known to be true. This means that several, potentially contradicting rules may fire at the same time and the engine needs to deal with conflict resolutions¹ to decide which one to execute. Adding majority voting into this mix is too much to handle.

Conditional executions of functions based on the outcomes of previous observations is not easy, as FC rules engines expect all data to be present at the moment rules are evaluated. We still give them a score of 40 out of 100 as they provide a good framework for expressing conditional (Boolean) logic.

¹ waylay.io

A Guide To Rules Engines for the Internet of Things | 5
2. Modeling time (0/100)
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

FC engines are incapable of expressing the time dimension in a rule - all rules modeled by forward chaining feel as if they are frozen in time.

3. Modeling uncertainty (0/100)
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

FC engines are incapable of expressing uncertainty or utility functions within a rule.

4. Explainability (20/100)
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

For simple problems, FC engines provide us with an easy way to design rules. In fact, there is nothing easier to grasp than if this then that type of rules! However, adding more conditional statements into a rule leads to very complex analyses, which hinder the understanding of the rule’s intent.

Moreover, the actual conditions of the rules, which often include thresholds and other Boolean expressions, are written and buried somewhere in the code, and are as such difficult to expose to the outside observer. As a work-around, during the design phase, rules are often represented as graphs with conditional outcomes modeled as labeled “arrows”. However, these graphs are nowhere to be seen or inspected once the rule is implemented.

Simulation, debugging and decision tracking (why has the rule fired at runtime) is not a trivial task, since the data determines which rules’ paths are selected and used. Moreover, as described earlier, the conflict resolution requires a priori selection of the conflict resolution strategy, which is not part of the rule but often a configuration parameter of the rules engine.

5. Adaptability (20/100)
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

Changing rules is possible but always problematic, as conflict resolution needs to be re-evaluated every time a condition in the rule changes.

Adding third-party API services to forward chaining engines is not a straightforward task and it is often accomplished directly in the code, leading to the API endpoints being directly coupled at the rule level. Since thresholds and other conditions are also often defined in the code, it is difficult to reuse the same API services across multiple instantiated rules.
6. Operability (20/100)
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mngt across groups of rules, useful for updates or end-of-life

Applying the same rule across many devices is possible as long as thresholds and other conditions do not change across devices. Anything more complicated is extremely difficult to achieve with FC, since many inputs to the rules are buried deeply inside the code.

7. Architecture Scalability (sharding and distributed computing) (20/100)

Forward chaining rules are stateless, which means that you can easily run multiple rules in parallel, but you can not distribute the load to different processes while executing one instance of a rule.
Condition–Action Engines

Although we can argue that Condition–Action based (CA) rules engines belong to the group of Forward Chaining engines, we have decided to evaluate them as a separate category, since many of the general FC comments don’t apply to them. The reason for this is that Condition–Action rules engines don’t allow multiple conditions, which makes them on one hand very limited in their logic expression capabilities and on the other hand - much more scalable. Condition–Action rules engines (if this - then that) are sometimes extended with the ELSE statement (if this - then that - else - that).

1. Modeling complex logic (0/100)
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

Unlike FC engines, CA engines can not model any complex logic (combining multiple non-binary outcomes, majority voting, conditional executions). They are meant to be used for very simple use cases.

2. Modeling time (0/100)
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, filling algorithms - forecasting for prediction and anomaly detection)

One way these engines work around the time dimension problem is that they often rely on external triggers for determining which rule to execute. That is to say, the IF condition of a rule becomes the WHEN condition (e.g. When weather is bad, send an alarm; When I come home, turn on the lights). This is often referred to as a trigger in these tools, and even though we may argue that this is not something that is part of the rules engine per se (because it needs to be coded somewhere else), it is still obvious how the time dimension could be introduced into the rules engine.

3. Modeling uncertainty (0/100)
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

CA rules engines are not capable of expressing uncertainty or utility functions within a rule.

4. Explainability (100/100)
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

Just like forward chaining engines, CA engines like IFTTT provide us with an easy way of designing rules for simple problems. There is nothing easier to grasp than if this then that rules.
5. **Adaptability (80/100)**
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

CA engines are both flexible and extensible. Adding third-party API services is rather simple, as the API extensions require minimal abstractions (if and act part). However, due to the nature of CA engines, there are limitations w.r.t. the usage of API services within rules.

Most of the times, CA engines use API services as triggered actions, not as inputs, as there is a single conditional input slot available, which in IoT use cases is usually taken by the device data. A typical example would be, for instance, to call an external API service (SMS, email, support ticket etc) if a device temperature registers above 25.

When CA engines do model the data of an API service as an input (what the ifttt.com CA engine for example calls a trigger, e.g. “if it is going to rain”), then we cannot combine this API service input with device data, as the single input slot is taken, and we can only use the device in this case as the actuator (e.g. “turn on lights”).

6. **Operability (80/100)**
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mgmt across groups of rules, useful for updates or end-of-life

Applying the same rule across many devices is possible as long as thresholds and all the other conditions do not change. Templating, versioning and searchability are rather easy to achieve with such rules engines but bulk upgrades are more difficult, as conditions and thresholds are often global variables and hard to change per instance of the running rule.

7. **Architecture Scalability** (sharding and distributed computing) *(80/100)*

CA rules are stateless and very simple, so it is very easy to scale these rules engines. However, they do not get the maximum score for this category, as scalability is truly achieved by only one rules engine category, namely the stream processing engines.
Flow Processing Engines

Flow based programming (FBP) is a programming paradigm that defines applications as networks of "black box" processes. These processes, a.k.a. functions, are represented as nodes that exchange data across predefined connections by message passing. The nodes can be reconnected endlessly to form different applications without having to change their associated functions.

FBP is thus naturally "component-oriented." Some of the benefits of FBP are:
- Change of connection wiring without rewriting components.
- Inherently concurrent - suited for the multi-core CPU world.

Yahoo! Pipes and Node-RED are two examples of rules engines built using the FBP paradigm. FBP has become even more popular with the introduction of "serverless" computing, where cloud applications can be built by chaining functions.

IBM's OpenWhisk is an example of flow based programing by chaining cloud functions (which IBM calls actions). Another serverless orchestration approach, based on Finite State Machine rules engines, such as AWS step functions, is discussed later.

1. Modeling complex logic (15/100)
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

FBP has no notion of states and state transitions. Combining multiple non-binary outcomes of functions (observations) in the rule is still possible, but must be coded in every function where it is applied. That also implies that you have to branch at every function where you need to model a multiple-choice outcome. This leads to extremely busy flow graphs that are hard to follow, especially since logic is expressed both in the functions themselves and in their "connectors" - path executions. These connectors somehow suggest not only the information flow but also the decisions that are being taken.

Similar to decision trees (which are discussed further on), such an approach for modelling suffers from an exponential growth of the number of nodes, as the complexity of the logic increases. What makes the matter even worse is that, unlike in decision trees, we cannot track the function outcomes as states. There is no better illustration of this drawback than to look at a slightly more complex flow being implemented using node-RED, and count the number of nodes and connectors. It is not unusual to have simple use cases designed by node-RED with 30 or 40 nodes and connectors, which can hardly even fit on one screen.

Majority voting in flow engines is possible only if we introduce the concept of merging the outputs of different nodes into a separate merge node. Even so, it's still problematic, as it requires to code majority rules within the function of that merge node.

Conditional executions of functions based on outcomes come out of the box.

2. Modeling time (10/100)
 - Dealing with the past (handling expired or soon-to-expire information)
• Dealing with the present (combining asynchronous and synchronous information)
• Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

Flow engines can barely deal with any aspect of the time dimension, since FBP is by design a stateless rules engine. In some limited use cases (which can hardly scale) you can merge streams within a time window.

3. Modeling uncertainty (0/100)
 • Handling noisy data or missing data
 • Handling the utility function
 • Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

FBP rules are not capable of expressing uncertainty or utility functions within a rule.

4. Explainability (35/100)
 • The intent of the rule should be clear to all users, developers and business owners alike
 • Compact representation of logic
 • Simulation and debugging capabilities
 • during design time
 • at runtime

For simple use cases, a flow based data stream representation feels natural, at least from the perspective of the information flow. But any attempt to create complex logic using FBP makes validating the intended logic very difficult.

Having said that, understanding which decisions are taken by looking at the flow graph is a very difficult task. The main reason for this is that the logic representation is not compact and the validation of the rules often requires streaming test data, followed by the validation of the function logs across all pipelines.

The logic is split between the flow pathways (as data travels between processing nodes) and the payload processing in each node, which might lead to different paths being taken after that processing node. Hence debugging and rules validation becomes a very tedious and error prone process. Moreover, we are never sure that all corner cases (the outputs as decisions from different inputs) are covered by a particular rule expressed using FBP - it looks almost as FBP based rules validation is an NP-hard problem.

5. Adaptability (60/100)
 • Flexibility (supporting changes, both technical and commercial)
 • Extensibility (integrating with external systems)

FBP engines have reusable black box nodes (functions). However, a partial update of any particular rule is nevertheless difficult and risky because this usually implies major changes to the graph and revalidation of the rules. In a way, the main reason for this is that for most rules engines, and for FBP in particular, there is a high correlation between explainability and flexibility.
Flow based rules engines are easy to extend with third-party services and extensibility is achieved in an elegant way.
6. Operability (20/100)
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mgmt across groups of rules, useful for updates or end-of-life

Templating is very difficult to achieve, since special care needs to be taken when handling payload transformations that happen as payloads are passed between different processing nodes. Also, thresholds and branching logic are part of the same payloads processing flow, making it very hard to abstract this logic. It’s for this same reason that bulk upgrades are error prone and risky.

7. Architecture Scalability (sharding and distributed computing) (75/100)

FBP engines are inherently concurrent since they have to distribute functional computations. They are also stateless, which means that the rules engine only needs to keep track of the current execution and further actions that need to be executed. On the other hand, if merging multiple outputs of different nodes is required in one rule, or when decision branching is introduced with different path executions, the rules engine will need to keep the snapshot (scope) of the rules execution somewhere.

Side note on flow engines: Node-RED

Operability (0/100)

Node-RED suffers from bigger operability issues than FBPs. The main reason is that its authors have chosen to let different protocol streams come directly into nodes as input data events. This was done deliberately in order to simplify protocol termination and to allow payload normalization being performed within node-RED. But it’s a decision that acts as a double-edged sword.

On the one hand, it means that protocol-dependent data streams can be implemented by any third-party and immediately used within the node-RED environment. It’s why node-RED is today very popular in the maker community and why it is the de-facto tool in the gateways of many industrial vendors. As protocol transformation and payload normalization are very important in IoT deployments, node-RED can be very valuable for edge deployments.

On the other hand, that same decision makes templating an order of magnitude more difficult: protocol transformation and payload normalization need to be part of the node-RED template, together with threshold definitions and branching.

Architecture Scalability (sharding and distributed computing) (75/100)

Though a good fit for edge deployments, an off-the-shelf Node-RED instance is not scalable for the cloud. Some vendors provide cloud solutions with sharding implemented on top of node-RED and by externalizing the protocol termination in a separate component. However, when taking such an approach they could as well switch back to the more generic FBP engines.
Decision Trees / Decision Tables

A popular way of capturing the complexity of conditional rules is by using decision trees, which are graphs that use a branching method to illustrate every possible outcome of a decision. There are several products on the market that offer rules engines based on decision trees/tables.

Drools, mostly known for its rules engine based on forward chaining, also has an extension to integrate with decision tables, using an excel sheet in combination with snippets of embedded code to accommodate any additional logic or required thresholds.

1. Modeling complex logic (30/100)
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

Decision trees are useful when the number of states per each variable is limited (such as binary YES/NO states) but can become overwhelming when the number of states increases. This is because the depth of the tree grows linearly with the number of variables, but the number of branches grows exponentially with the number of states. For instance, with 6 Boolean variables, there are $2^6 = 64 = 18,446,744,073,709,551,616$ distinct decision trees (in literature, often referred to as the “hypothesis space for decision trees” problem).

Majority voting is not possible, unless we branch even further, where multiple distinct outcomes are also part of the tree structure. Conditional executions should come out of the box. As the name suggests, decision trees are all about conditional executions. Having said that, decision trees are never implemented as such in an IoT context. In expert systems, where decisions are outcomes of Q&A scenarios, logic would follow conditional execution, as new data (questions) is served to the decision tree engine. On the other hand, in an IoT context, we feed rules engines with data, and expect decisions to come back as a result. In that case, we talk about decision tables, which means we feed data into the decision tables and results (decisions) come back at once. More about this not so subtle difference between tables and trees can be found here:
https://www.aihirlabs.com/difference/decision-table-decision-tree/
We still give decision trees a score of 30 out of 100, since interpretability is what makes them very attractive in use cases where this capability is essential (such as healthcare, among others).

2. Modeling time (0/100)
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

We can not model the time dimension with decision trees, unless we include time information as nodes within the tree (e.g. weekend, day of week, time of day etc). Even so, we can not use time as a means of expressing change in our underlying observations, so none of these are possible: dealing with the past (handling expired or soon-to-expire information), dealing with the present (combining asynchronous and synchronous information), dealing with the future (forecasting for prediction and anomaly detection).
3. Modeling uncertainty (10/100)
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

Decision trees use a white box model. Important insights can be generated based on domain experts describing a situation and their preferences for outcomes. But decision trees are unstable, meaning that a small change in the data can lead to a big change in the structure of the optimal decision tree. They are also often relatively inaccurate. Calculations can get very complex, particularly if many values are uncertain and/or if many outcomes are linked. Decision trees cannot model uncertainty and utility functions, unless, just like with time information, we add these within the tree as decision nodes, which complicates decision tables even further.

4. Explainability (70/100)
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

Decision trees are easy to understand and interpret. People are able to understand decision tree models after just a brief explanation. Still, decisions cannot be seen or inspected once the rule is instantiated and are only represented as labeled “arrows” in the graph during the design phase. When implemented as decision tables, the explainability drops further as each row in the table is a rule with each column in that row being either a condition or action for that rule. That results in the total sequence not being clear - no overall picture is given by decision tables.

5. Adaptability (0/100)
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

Decision trees are mostly used for graphical knowledge representation. It is extremely hard to build a rules engine with decision trees and even harder to build applications on top of it. They are hard to extend with any third-party systems. Also, any small change in the training data can lead to a big change in the structure of the optimal decision tree.

6. Operability (0/100)
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mngt across groups of rules, useful for updates or end-of-life

Applying the same decision tree rule across multiple devices is close to impossible, as most of the decision trees implement rules by mixing logic residing in decision tables with actions defined separately in code, making it extremely difficult to manage the complete process.
7. Architecture Scalability (sharding and distributed computing) (10/100)

Decision tree rules are stateless, which means that, in theory, it should be easy to run multiple rules in parallel. However, you cannot, within one instance of a rule, distribute the load to different processes while executing that one particular rule. The fact that the depth of the tree grows linearly with the number of variables but the number of branches grows exponentially with the number of states makes decision trees hard if not impossible to scale. Calculations can get very complex, particularly if many values are uncertain and/or if many outcomes are linked.
Stream Processing Engines

Stream processing is the processing of data in motion—in other words, computing on data directly as it is produced or received (as opposed to map-reduce databases such as Hadoop, which process data at rest).

Before stream processing emerged as a standard for processing continuous datasets, these streams of data were often stored in a database, a file system, or some other form of mass storage. Applications would then query the stored data or compute over the data as needed. One notable downside of this approach—broadly referred to as batch processing—is the latency between the creation of data and the use of data for analysis or action.

In most stream processing engines users have to write code to create operators, wire them up in a graph and run them. Then the engine runs the graph in parallel. Examples of stream processing engines are Apache Storm, Flink, Samza etc.

Upon receiving an event from a data stream, a stream processing application reacts to the event immediately. The application might trigger an action, update an aggregate, or “remember” the event for future use.

Stream processing computations can also handle multiple data streams jointly, and each computation over the event data stream may produce other event data streams.

Stream processing engines have a narrow usage in IoT - for runtime processing of IoT data streams. They are not designed as a generic rules engine and e.g. cannot actuate back on devices directly.

Stream processing rules engines are typically used for applications such as algorithmic trading, market data analytics, network monitoring, surveillance, e-fraud detection and prevention, clickstream analytics and real-time compliance (anti-money laundering).

1. Modeling complex logic (25/100)
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

No high order logic constructions (combining multiple non-binary outcomes, majority voting, conditional executions) are possible with stream rules engines. However, developers can run StreamSQL on top of the datastreams, where simple thresholds together with aggregation across all streams or certain stream subsets can bring great value for some use cases.

2. Modeling time (30/100)
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

Stream processing engines cannot cope with synchronous and asynchronous events in the same rule. This means that we can’t intercept the stream data and at the same moment call an external API service, while executing the rule. Stream processing engines are designed to focus on the high
throughput stream execution, which would, for any API call that has a big round-trip delay for a
given event, simply break the processing pipeline.

Still, stream processing engines have a very powerful query language - StreamSQL. StreamSQL
queries over streams are generally "continuous", executing for long periods of time and returning
incremental results. These operations include: Selecting from a stream, Stream-Relation Joins, Union
and Merge and Windowing and Aggregation operations.

3. **Modeling uncertainty (0/100)**
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different
 outcomes for one given sensory output)

Stream processing rules engines are not capable of expressing uncertainty or utility functions within
a rule.

4. **Explainability (15/100)**
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

Unless you are a developer and familiar with Stream SQL, it is impossible as a user to understand
the behaviour of any particular rule. We can argue the same for any typical SQL-based solution,
therefore we give it an overall score of 20 out of 100.

5. **Adaptability (10/100)**
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

API extensions and overall flexibility are weak points of these rules engines. Stream processing
engines are data processing pipelines, not meant to be directly integrated with third-party API
systems.

6. **Operability (10/100)**
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mngt across groups of rules, useful for updates or
 end-of-life

In many IoT stream processing use cases, stream processing is used for global threshold crossing
(e.g. send an alarm if temperature of any event is above a threshold) or aggregations (e.g. average
temperature in a given region) but any more complicated calculation or per device threshold
crossing is extremely hard to achieve. This is why templating, updating rules per device or version
updates are very difficult.
7. **Architecture Scalability** (sharding and distributed computing) *(100/100)*

When it comes to real-time large-volume data processing capabilities, nothing can beat stream processing engines.
CEP Engines

Although part (and predecessors) of stream processing engines, Complex Event Processing engines deal with events in a slightly different (and better) way than their bigger and younger siblings.

We see CEP engines being deployed in edge computing nowadays, where locality, low latency and low hardware footprint are important. CEPs are a good fit whenever a low footprint is required, but don’t scale well since all event processing happens in-memory.

WSO2, Litmus Automation and Foghorn are examples of vendors offering CEP rules engines for edge computing.

1. Modeling complex logic (35/100)
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

Arguably, high order logic constructions (Combining multiple non-binary outcomes, Majority voting, Conditional executions) are possible, but with a lot of difficulty and coding effort, since CEP engines are not designed with these features in mind.

2. Modeling time (45/100)
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

Often CEP engines have built-in operators such as time windows and temporal event sequences integrated into their query language. CEP engines, like Stream Processing engines, can’t cope with async and sync events in the rule. They also have difficulty dealing with the “past” - meaning invalidating events after a given period of time. Compared to Stream Processing engines however, they often have better capabilities for pattern matching, which enables better anomaly detection at runtime, hence we give them a better score, as this is one of the stronger points of CEP engines.

3. Modeling uncertainty (0/100)
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

CEP engines are not capable of expressing uncertainty or utility functions within a rule.

4. Explainability (15/100)
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

© waylay.io
A Guide To Rules Engines for the Internet of Things | 19
CEP engines rules are hard to reason about, since all logic is buried somewhere deeply in the code.

5. Adaptability (10/100)

- Flexibility (supporting changes, both technical and commercial)
- Extensibility (integrating with external systems)

Flexibility is a weak point of these rules engines but, compared to stream processing engines, it ranks better for extensibility since one can still imagine better API integration capability, mostly in the actionable part (send SMS if something goes wrong).

6. Operability (10/100)

- Templating to apply the same rule to multiple of devices, or to similar use cases
- Versioning of both templates and running rules, for snapshotting and rollbacks
- Searchability to easily search rules by name, API in use, type of device and other filters
- Rules analytics to understand most triggered rules, most common actions taken etc.
- Bulk upgrades for lifecycle mngr across groups of rules, useful for updates or end-of-life

Similar to Stream Processing engines, in anything beyond simple use cases, operability is extremely hard to achieve since templating, updating rules per device or version updates are very difficult.

7. Architecture Scalability (sharding and distributed computing) (100/100)

CEPs are a good fit when a low footprint is required but suffer from scalability issues because of the lack of distributed computing capabilities and because they process all data in-memory.
Finite State Machines

A state machine can be used to describe the system in terms of a set of states that the system goes through. A state is a description of the status of a system that is waiting to execute a transition. A transition is a set of actions to be executed when a condition is fulfilled or when an event is received.

1. **Modeling complex logic (10/100)**
 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

Finite state machines are modeling simple relations, aka transitions from one state to the other, and are mostly used to model business processes. Combining multiple non-binary outcomes and majority voting is not possible with FSM engines. Conditional executions is all they can do (conditions are defined for each transition).

2. **Modeling time (0/100)**
 - Dealing with the past (handling expired or soon-to-expire information)
 - Dealing with the present (combining asynchronous and synchronous information)
 - Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

FSM engines are not capable of expressing time in the rule, unless we talk about state transitions based on time of day / week / month.

3. **Modeling uncertainty (0/100)**
 - Handling noisy data or missing data
 - Handling the utility function
 - Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

FSM engines are not capable of expressing uncertainty or utility functions within a rule.

4. **Explainability (50/100)**
 - The intent of the rule should be clear to all users, developers and business owners alike
 - Compact representation of logic
 - Simulation and debugging capabilities
 - during design time
 - at runtime

The concept of FSM is easy to grasp by different types of users. The main selling argument of BREs (Business Rules Engines) is that BRE software allows non-programmers to implement business logic in a business process management (BPM) system.

One thing often overlooked with FSM is that states imply transitions, that is to say, the only purpose of having something modeled as a state is to navigate a particular decision flow.

© waylay.io
A Guide To Rules Engines for the Internet of Things | 21
A direct result of that is that FSM lacks readability as rules become more complex, or when a particular corner case needs to be modeled as a state. Since FSM is capable of executing only one transition at a time, when a user tries to introduce events that might happen under certain conditions, she needs to add a new state. When the number of states becomes too large, the readability of the state machine drops significantly.

5. **Adaptability (40/100)**
 - Flexibility (supporting changes, both technical and commercial)
 - Extensibility (integrating with external systems)

Adding third-party API services is quite easy as the API extension requires minimal abstractions (conditional outcomes on any given input that resolves in one of the available set of states). Flexibility is not a forte however, because it is very difficult to change rules once they are implemented.

6. **Operability (45/100)**
 - Templating to apply the same rule to multiple of devices, or to similar use cases
 - Versioning of both templates and running rules, for snapshotting and rollbacks
 - Searchability to easily search rules by name, API in use, type of device and other filters
 - Rules analytics to understand most triggered rules, most common actions taken etc.
 - Bulk upgrades for lifecycle mngr across groups of rules, useful for updates or end-of-life

Applying the same rule across many devices is possible as long as thresholds and all other conditions do not change. Templating and searchability is quite easy to achieve with such rules but versioning and performing bulk upgrades is harder, as conditions and thresholds are often global variables and hard to change per instance of the running rule.

7. **Architecture Scalability** (sharding and distributed computing) (50/100)

Like FBP engines, FSM engines can distribute functional computations (state executions). On the other hand, within one rule, all executions are sequential. FSM are not stateless, which means that the rules engine needs to keep track of the current rules executions and apply transitions after every function call to delegate to the next node.
The Waylay Engine

The Waylay IoT rules engine is an inference engine based on Bayesian Networks (BN). It allows both backward and forward inference (state propagation) which enables both push (data streams) and pull modes (API synchronous calls) to be treated as first class citizens.

The Waylay IoT rules engine provides three important abstractions on top of off-the-shelf BNs:

- The Waylay IoT rules engine models rules using the Smart Agent concept that consists of Sensors, Logic and Actuators. It decouples logic from sensing and actuation. As a result, sensors and actuators can easily be reused across rules.
- The Waylay IoT rules engine models joint relations of variables (sensors) through simplified Conditional Probability Tables (CPT) and allows very simple compact logic representation, further enhanced by using the DAG model.
- The Waylay IoT rules engine models the information, control and decision flows independently. This empowers the rules designer to have full control over the rules execution.

The Waylay rules engine has the following key characteristics:

- Unlike flow rules engines, there is no left-right input/output logic. The information flow happens – in all directions, all the time.
- Unlike flow rules engines, the Waylay rules engine does not need "injector nodes" or "split/merge" input/outputs nodes in order to deal with multiple possible outcomes.
- Unlike forward chaining algorithms or decision trees, the Waylay rules engine does not model logic by branching all possible outcomes.
- When modeling conditions of multiple variables with multiple states, the Waylay rules engine doesn't suffer from an exponential explosion of the graph size like decision trees.
- The Waylay rules engine is a state propagation engine similar to FSM, but unlike FSM, it allows multiple state transitions to happen at the same time.
- Similar to forward chaining, the Waylay rules engine allows modeling multiple conditions, but the decision process is not guided by pattern matching of all conditions.
- The Waylay rules engine can model likelihoods.
- Unlike any of the other technologies discussed here, the Waylay rules engine models the information flow, control flow and decision flow independently.

1. **Modeling complex logic (100/100)**

 - Combining multiple non-binary outcomes of functions (observations) in the rule
 - Dealing with majority voting conditions in the rule
 - Handling conditional executions of functions based on outcomes of previous observations

The Waylay rules engine combines multiple non-binary outcomes of functions (observations) in a rule, beyond Boolean true/false states.

The combination of variables is simplified by means of aggregation nodes, that also provide a compact representation of logic. The relation between variables and their states is expressed via conditional probability tables (CPT). Conditional dependencies are expressed using gates with "simplified" CPTs (with zeros and ones only).
he Waylay rules engine defines three types of gates: AND, OR and GENERAL. Event though the first two (AND, OR) resemble Boolean Logic there are two important differences:

- All gates can be attached to a “non-binary” sensor (a sensor having more than two states)
- Not all sensors need to be observed in order to have the gate state with posterior probability 1.

The GENERAL gate allows modeling both a combination of multiple sensor outcomes and majority voting at the same time.

More about this feature can be found here

The Waylay rules engine handles conditional executions of functions based on the outcomes of previous observations by decoupling the information from the control flow. For instance, one can create a rule in which the execution of certain sensors depends on the outcome of others. Conditional execution of functions can also be triggered by the state transitions of the attached sensor. An example of such a rule can be found here.

2. Modeling time (100/100)

- Dealing with the past (handling expired or soon-to-expire information)
- Dealing with the present (combining asynchronous and synchronous information)
- Dealing with the future (outliers, time windows, fitting algorithms - forecasting for prediction and anomaly detection)

The Waylay rules engine handles the past (expired or soon-to-expire information) via the concept of eviction time. The eviction time defines the time after which a sensor goes back to its priors. For example, if a sensor has N states, the system will assume by default that the sensor is with a probability of 1/N in each of the N states, after the eviction time. If the eviction time is not defined, the sensor will never go back to its priors.

Eviction time is useful when dealing with broken sensors (e.g. due to flat batteries), intermittent connectivity or non-responsive APIs. It allows you to specify the period of time during which you can still rely on information from previous observations. It also provides an elegant way of merging streams from different sensors, such in the case of motion sensors, where we can imagine a rule needing to trigger an action only if we have motion registered from multiple sensors within the same time window.

The Waylay rules engine also has an embedded CEP engine (called a Formula node), which takes as input raw sensor measurements (not just sensor states). The CEP engine applies complex statistical formulas, aggregation in time or on number of samples or search for a particular pattern (state changes).

Dealing with the present (combining asynchronous and synchronous information) comes out of the box, there is no extra effort needed from developers in order to use this feature.

With most rules engines, API integration is done on the actuation side (for example - send as SMS when a certain threshold is reached). In the Waylay rules engine, APIs can easily be used as inputs in the rules as well, for example, when combining weather data from an API call with stream data from a sensor. This is an important feature for use cases where the locality of information is very important.

When it comes to anomaly detection and predictions, the Waylay rules engine comes with a specific module called Time Series Analytics that provides advanced capabilities such as anomaly detection
and **prediction** on the data stored in the Waylay *Time Series Database*. These capabilities are natively exposed in the Waylay rules engine, via the concept of sensors. The rule designer can make use of TSA and implement rules such as:

- Send an SMS if the predicted energy consumption for the next 2 weeks is above a threshold.
- Create a Zendesk ticket or send an email if the sensor battery will be at 20% in 2 weeks time.
- Create an alarm if an anomaly detected.

It is important to mention that the fitting algorithm, anomaly definition and detection (whether we assume that the anomaly is an outlier, or something that doesn’t follow the expected behavior, and whether we are concerned with every anomaly or we search for consecutive anomalies) and prediction intervals can all be separately modeled.

3. **Modeling uncertainty (100/100)**

- Handling noisy data or missing data
- Handling the utility function
- Handling probabilistic reasoning (building logic based on the likelihoods of different outcomes for one given sensory output)

The Waylay rules engine allows probabilistic reasoning by assigning actuators to fire when a node or a gate (relation between multiple nodes) is in a given state with a given probability. Moreover, you can as well associate different actuators to different outcome likelihoods for any node in the graph.

4. **Explainability (50/100)**

- The intent of the rule should be clear to all users, developers and business owners alike
- Compact representation of logic
- Simulation and debugging capabilities
 - during design time
 - at runtime

The Waylay rules engine provides compact representation of logic. Combining two variables (which we refer to as sensors) is done via aggregation nodes. Waylay is also a state propagation engine, which allows an easy interpretation of the rules by following the changes of the states. It also allows easy debugging and simulation, even without data inputs, simply by following the state changes of any given sensor at design time.

5. **Adaptability (100/100)**

- Flexibility (supporting changes, both technical and commercial)
- Extensibility (integrating with external systems)

Modeling rules using the Smart Agent concept (consisting of Sensors, Logic and Actuators) makes it easy to reuse the building blocks: the Sensors and Actuators. The Waylay rules engine provides a sandbox execution environment in which end users can easily create new sensors and actuators based on external APIs. Once created, these sensors and actuators can be easily shared between different rules.

6. **Operability (100/100)**

- Templating to apply the same rule to multiple of devices, or to similar use cases
- Versioning of both templates and running rules, for snapshotting and rollbacks
- Searchability to easily search rules by name, API in use, type of device and other filters
- Rules analytics to understand most triggered rules, most common actions taken etc.
• Bulk upgrades for lifecycle mngt across groups of rules, useful for updates or end-of-life

Sensors and actuators are versioned. When updating a (sensor or actuator) plug, a new version will be stored in the cloud. These new versions can then be reapplied to the running rules with zero downtime.

Templates are generic rules that have not yet been associated to a particular device or instance. All templates can be stored and shared using JSON representation, while all operations are exposed over APIs. The Waylay rules engine also comes with a rich provisioning API model, which models device relations as well as rules inheritance. That way, the same template can be instantiated many times as tasks, by associating device specific parameters to a specific template.

This mechanism is operationally very efficient in the sense that templates only need to be developed once, but can then be instantiated many times. As an example, assume you generate a template for an appliance and in the field, you have 100k appliances deployed: then you would have one template and 100k tasks running on the Waylay rules engine.

The admin console of the Waylay rules engine provides an inventory of all tasks currently running, as well as lifecycle management on a per task level: create, delete, start, stop, debug. In addition, an actuator log provides a historical overview of the actuators that have been triggered.

7. Architecture Scalability (sharding and distributed computing) (80/100)

The Waylay rules engine has three components:
• the inference engine (which controls the information, control and decision flows)
• the sandbox, where external APIs (sensors and actuators) get executed in stateless fashion, similar to lambda (cloud functions) architecture
• the time series analytics engine

All these components can be independently sharded, allowing horizontal scaling.
Conclusion

Rules engines are powerful automation SW tools that come in various shapes and flavours.

Different types of engines were built to address different problems and some have overlapping functionality. Hence, it can be difficult to figure out which type of rules engine best suits the needs of your IoT use case. In order to assist you in the evaluation and decision process, we have defined a benchmark composed of seven core rules engine capabilities: modeling complex logic, modeling time, modeling uncertainty, explainability, adaptability, operability and scalability.

This white paper has evaluated and scored the seven most common types of rules engine technologies and our very own Waylay rules engine against this benchmark.

The benchmark results show that existing rules engine technologies have major shortcomings in one or multiple of the dimensions, which in the end may force developers to go back to code anyway.

The benchmark score card also shows how Waylay's rules engine empowers developers and integrators to implement the most demanding and complex automation use cases.
Learn more

We help enterprise developers build IoT applications by providing an automation PaaS to develop apps for cloud and the edge.

Get in touch now to learn more
info@waylay.io
+32 9 311 55 66
www.waylay.io